# **Anion-Assisted Sigmatropic Rearrangements**

Stephen R. Wilson, New York University, New York, New York

# 1. Introduction

The use of sigmatropic rearrangements for the synthesis of organic compounds has become one of the important synthetic tools available to the organic chemist, especially since the development of the detailed stereochemical understanding of these processes in terms of orbital symmetry. (1) The flexibility and predictability of the Cope rearrangement (Eq. 1) make this type of process widely applicable. (2) The



interest and synthetic activity related to the Cope rearrangement can be seen in a previous review of the Claisen and Cope rearrangements. (3) In that review, several variations of the rearrangement were discussed, including examples of the "oxy-Cope" rearrangement (Eq. 2). The name "oxy-Cope" rearrangement was first applied to the reaction shown in Eq. 3. (4) In 1975 examples of an oxy-Cope rearrangement were reported wherein an enormous rate acceleration ( $10^{15}$ ) was observed on formation of the potassium salt of the oxy-Cope substrate (Eq. 4). (5)



This chapter surveys extensions of this type of anionic substituent effect to other [3,3]-, [5,5]-, [1,3]-, and [1,5]-sigmatropic rearrangements as well as retro-[2 + 2] and reverse Diels–Alder reactions. Specifically excluded are the ester enolate Claisen rearrangement which is mechanistically unrelated, (6) the Wittig rearrangement, (7) and the Haller–Bauer reaction. (8) The chemical literature has been searched to the end of 1989. Emphasis is placed on reactions of synthetic utility, novelty, and generality.

# 2. Mechanism and Stereochemistry

We now have a fairly clear picture of the anion-accelerated class of reactions. The anionic substituent is usually an alkoxide and must be placed on a carbon atom on the bond which is broken during the rearrangement. That bond is indicated by the dashed arrows in Eqs. 5–9b.





In each case, anion formation provides an electron "push" that assists carbon–carbon bond breaking. What simultaneous bond making may occur is not so important. (9) Examples are now known of [3,3]-sigmatropic rearrangements (Eq. 5), [1,3]-sigmatropic rearrangements (Eqs. 6a' 6b), cycloreversions (Eqs. 7a–7c), [1,5]-hydrogen shifts (Eq. 8), and electrocyclic ring openings (Eqs. 9a' 9b).

One can write a polarized transition state **1** for the oxy-Cope rearrangement that resembles an anion–carbonyl complex (Eq. 10). This formalism can be compared to the Lewis acid catalysis of the Diels–Alder reaction (Eq. 11) where stabilization of



the bond-making step (intermediate 2) is important. Thermodynamic estimation indicates that bond weakening by an alkoxide substituent provides 13-17 kcal/mol for bond homolysis; however, heterolysis is preferred over

homolysis by an additional 17–34 kcal/mol (Eq. 12). (10, 11) Ab initio calculations confirm the dramatic effect of

$$^{-}OCH_2R$$
  $^{-}OCH_2^{\bullet} + R^{\bullet} + 13-17 \text{ kcal/mole}$  (12)  
 $O=CH_2 + R^{-} + 30-51 \text{ kcal/mole}$ 

the alkoxide substituent in weakening an adjacent bond. (12) These results are consistent with qualitative estimates of the effects of donor substituents. (13-16) The anionassisted oxy-Cope reaction has actually been observed in the gas phase in an ion cyclotron resonance spectrometer where ion-pairing or solvent effects are absent. (17)

The initial carbon–carbon bond cleavage resembles a reverse Grignard reaction. In a similar way, the initial adduct of di-*tert*-butyl ketone and 2-butenylmagnesium bromide reverts on standing (Eq. 13). (18) The very hindered alkoxide **3** fragments to produce di-*tert*-butyl ketone on formation of the potassium salt (Eq. 14). (19) The stability



of the carbonyl group and the much higher basicity of a hindered alkoxide in polar aprotic solvents shifts the equilibrium from alkoxide to carbanion. Factors that make the alkoxide less stable (more basic), such as more polar solvents or the addition of complexing agents such as phase-transfer catalysts, (20-21a) will accelerate the reactions. Sterically crowded alkoxides, especially those derived from tertiary alcohols, are also likely to react faster. The effects of ion-pairing on fragmentation rates of alkali metal alkoxides has recently been examined. (21b) Besides the well-known order of dissociation (Cs > K > Na > Li), steric inhibition of ion-pairing and steric enhancement of reactivity have been quantified.

Sigmatropic rearrangements have been induced most commonly by an alkoxide substituent, although carbanions (Eq. 71) and amide anions (Eq. 156)

have also been used. In addition, factors that stabilize the negative charge of the carbanion make the reactions go faster. Substituents on the diene **4** such as phenyl (Eq. 67), vinyl (Eq. 102), carboxy (Eq. 62), or aryl sulfide (Eq. 64) stabilize the developing negative charge and greatly accelerate the reaction.



4: R = C<sub>6</sub>H<sub>5</sub>, CH=CH<sub>2</sub>, CO<sub>2</sub>H, SR<sup>1</sup>

If the carbon–carbon bond being broken is intrinsically weak, as in cyclopropanes (Eq. 105) or cyclobutanes (Eq. 114), the isomerizations are generally very rapid.

Once the initial carbon–carbon bond breaking induced by the alkoxide substituent has begun, the product distribution and stereochemistry can often be predicted in terms of the known thermal rearrangements of substrates lacking the anionic substituent.

# 2.1. [3,3]-Sigmatropic Rearrangements

The Cope rearrangement usually occurs via a chair transition state. (3) The anion-assisted oxy-Cope often appears to be a concerted process that likewise proceeds via a chair transition state (Eq. 15). (22) The [3,3]-sigmatropic rearrangement of alkoxides



5a and 5b occurs 97% via a chair transition state for 5a and 77% for 5b.
Substrates that can only rearrange via the boat transition state will do so. A number of examples of 1,5-diene alkoxides such as 6 do not undergo rearrangement because the two ends of the diene cannot reach each other.
(23) Typically in those cases competing [1,3] shifts or fragmentations are observed.



6: X = OC<sub>4</sub>H<sub>9</sub>-n or SC<sub>4</sub>H<sub>9</sub>-n

Sometimes epimerization can occur prior to rearrangement. Reaction of ketone **7** with vinylmagnesium bromide gives a mixture of epimeric alcohols that can be separated by chromatography (Eq. 16). (24) The potassium salts of both isomers undergo the anionic oxy-Cope rearrangement at room temperature, evidently via the equilibration shown in Eq. 17.



# 2.2. [1,3]-Sigmatropic Rearrangements

The stereochemistry of the [1,3] rearrangement is consistent with the Woodward–Hoffmann rules, that is, suprafacial carbon shift with inversion at the oxygen-bearing carbon (Eq. 18). (25) Another study with the isomeric cyclopropanols **8a** and **8b** (Eq. 19) confirms that the inversion pathway takes place when possible, but that stereospecific isomerization with retention at the migrating center also occurs. (26)





An elegant stereochemical study involves the [1,3]-sigmatropic shift of alcohol **9** to ketone **10** (Eq. 20). The isomerization proceeds with at least 65% retention at the



migrating center and not inversion, as predicted by orbital symmetry considerations. (27) This is consistent with the argument that an anionic substituent accelerates a forbidden pericyclic reaction more than it does an allowed one. (15) Although this general principle remains to be proven, it is true that in many [1,3]-sigmatropic shifts rearrangement occurs via the "forbidden" suprafacial–retention mechanism. The reaction is about 75% intramolecular. The evidence that at least some product is derived by an intermolecular pathway is consistent with the notion that a highly polarized transition state is involved (Eq. 21). In most of the anion-assisted rearrangements

$$\bigvee_{R}^{O^{-}} \left[ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

to be described, such a transition state sometimes leads to fragmentation as a major side reaction, a proton being abstracted either from solvent or from the ketone intermediate. The anion-assisted [1,3]-sigmatropic rearrangement of **11** cannot be concerted (Eq. 22); it probably proceeds via allyl anion **12**. (28)



#### 2.3. Cycloreversions

The anion-assisted [2 + 2] cycloreversion of *cis*-2,3-dimethylcyclobutanol is not completely stereospecific, although the expected *cis* olefin is the major product (Eq. 23). (29) There has been no stereochemical study of the related [4 + 2]-cycloreversion reaction.



### 2.4. [1,5]-Sigmatropic Shifts

The few examples of anion-assisted [1,5]-hydrogen shifts (e.g., Eq. 24) occur in medium-sized rings where the propensity for transannular hydrogen migrations is well known. (30) There are no examples where the expected suprafacial stereochemistry has been established.



### 2.5. Electrocyclic Ring-Opening Reactions

The anion-assisted  $[4 \pi + 2 \sigma]$  electrocyclic ring opening (Eq. 9a) is not well represented. The single example (Eq. 25) could also be written as a direct fragmentation reaction, and no stereochemical information is available. (31)



The anion-assisted  $[2 \pi + 2 \sigma]$  electrocyclic ring-opening reaction (Eq. 26) generally produces mixtures of isomers, but it is not known whether they correspond to conrotatory or disrotatory ring opening. (32a)



# 3. Scope and Limitations

## 3.1. [3,3]-Sigmatropic Rearrangements

3.1.1.1. 1,2-Divinylcycloalkanols

Ring expansion of 1,2-divinylcycloalkanols by anion-assisted [3,3]-sigmatropic rearrangement is a useful route to previously difficultly accessible 1,5-cyclodecadienes. 32b,32c,33–38 Normally the divinylcyclohexane–cyclodecadiene Cope rearrangement (Eq. 27) is reversible





side of the 1,2-divinylcyclohexane. Formation of the potassium salt of alcohol **13** in the presence of 18-crown-6 in tetrahydrofuran (THF) leads to the production of ketone **14** in greater than 75% yield after 18 hours at room temperature (Eq. 28). (34)



Preparation of divinylcycloalkanols can be accomplished in a number of ways. Some  $\alpha$  -vinylcyclohexanones are available from related terpenes (Eq. 29). (33, 34, 38) Addition of vinylmagnesium bromide then affords the requisite divinylcycloalkanols. (34)



Methods have also been developed for producing divinylcycloalkanols in one

step from  $\alpha$  -chloroketones via addition-rearrangement reactions (Eq. 30). (39) A variation involves the addition of alkynyl Grignard reagents to  $\alpha$ -chloroketones followed by reduction-rearrangement with lithium aluminum hydride. (40)



Other approaches use either aldehydes **15** (32b-37) or **16** (41) for direct vinylation of ketones (Eq. 31). Photocycloaddition of allene to cyclohexenone and other special routes to divinylcarbinols can also be employed (Eq. 32). (32c-36)





Divinylcyclohexanols generally rearrange as the potassium salts in tetrahydrofuran at room temperature or at reflux. The salts are most often formed by treatment of the corresponding alcohols with a slight excess (usually 1.2 equivalents) of potassium hydride. For example, alcohol **17** rearranges in tetrahydrofuran when treated with potassium hydride and 18-crown-6 at reflux for 1 hour (Eq. 33). (36) A related alcohol is deprotonated and rearranged using five molar equivalents of potassium hexamethyldisilazide [KN(TMS)<sub>2</sub>]. (38)



Because of the importance of this approach to the germacrane sesquiterpenes, considerable efforts to optimize conditions for the rearrangement have been reported. The [3,3]-sigmatropic rearrangement of alcohol **18** (Eq. 34) is extremely sensitive to batches of potassium hydride from different commercial sources. In contrast, the alcohol **19** always rearranges smoothly (Eq. 35). Purification of potassium hydride by pretreatment with iodine (this process converts contaminating elemental potassium or potassium superoxide into potassium iodide) leads to reproducibly high yields in the reactions of both Eq. 34 and Eq. 35. (42)





Treatment of alcohol **20** with potassium hydride under the usual conditions leads only to decomposition. (20) If a catalytic amount of tetra-*n*-butylammonium iodide, a phase transfer catalyst known (20) to enhance the alkylation of potassium alkoxides, is



added, the [3,3]-sigmatropic rearrangement proceeds smoothly to produce ketone **21** in 74% yield. This is the only report of such a salt effect. It is likely that other types of isomerizations can be enhanced by this technique as well.

An extensive study of chirality transfer in the [3,3]-sigmatropic shift (Eq. 36) affirms that rearrangement occurs via a chair transition state. (43)



Several rearrangements of divinylcarbinols are followed by further

condensation of the resulting enolates. (44-47) For example, hydroxy ketone 22 is converted into diketone 23 via rearrangement followed by transannular cyclization (Eq. 37). Very mild basic conditions suffice in this reaction because the carbanion-stabilizing ketone group in 22 allows the critical bond-breaking step to occur without a completely free alkoxide. (44)



23 (50%) (stereochemistry not determined)

An interesting example of the in situ generation of a divinyl precursor by desilylation is shown in Eq. 38. (48)



Application of the divinylcyclohexane oxy-Cope rearrangement to the total synthesis of periplanone B (49, 50) and 13-norheliangolides (51) has been reported.

### 3.1.1.2. Bicyclic Vinylcarbinols

The rearrangement of bridged vinylcarbinols such as **24** (Eq. 39) leads to 5/6, 6/6, and 7/6 fused ring systems. (5, 23, 52, 53) The strain in



bicyclo[2.2.1]heptenes and bicyclo[2.2.2]octenes accelerates these reactions. Thus treatment of 7,7-dimethoxybicyclo[2.2.1]hept-4-en-1-one with vinyImagnesium bromide followed by potassium hydride leads to the rearrangement product in 72% yield (Eq. 40). (54, 55) On the other hand, 7-vinylbicyclo[2.2.1]heptenes usually undergo [1,3]-sigmatropic rearrangements instead (28) because geometric constraints prevent them from achieving the proper transition state for the [3,3] rearrangement.



Isomerization of alcohol **25a** to the corresponding bicyclic compound **26a** with potassium hydride in tetrahydrofuran occurs through the dianion (Eq. 41). When the



potassium or sodium salt of acetal **25b** is heated in tetrahydrofuran, no reaction occurs. However, the sodium salt of **25b** isomerizes to **26** on heating in benzene. (56a) This unusual result contrasts with the typical rate enhancements observed in polar aprotic (and ionizing) solvents. It is possible that the *syn* disposition of the acetal group in **25b** promotes coordination with the alkoxide, thus reversing the typical solvent effect. Isomerization of benzyl

ether **25c** to the analogous bicyclo[4.3.0]ketone **26c** is used in the synthesis of steroidal C/D units. (56b) Entry into the aristolane family of sesquiterpenes is achieved by [3,3]-sigmatropic rearrangement of alcohol **27** to give the expected Cope product **28** as well as small amounts of compound **29**, derived via a competing [1,3] shift (Eq. 42; see later section and Table VIII.) (57) This side reaction is not observed when the rearrangement is carried out without 18-crown-6.



Construction of the forskolin skeleton by anion-assisted oxy-Cope rearrangement is shown in Eq. 43. (58) This reaction has also been used in the total synthesis of reserpine (59) and dihydroneptalactone, (60) and in the synthesis of a structure that had been assigned to cannivonine. (61)



Base treatment of alcohols **30a** or **30b** leads to products of both [1,3] and [3,3] rearrangements (Eq. 44). (28) Rearrangement of the isomeric alcohol **31** cannot be concerted; it proceeds instead by way of allyl anions **32a** and **32b** (Eq. 45). The latter is favored since the electron-donating methyl substituent is on the center atom of the allyl anion.



Incorporation of additional rings into the substrates leads to propellanes (Eq. 46) (62) or tricyclic systems (Eq. 47). (53)





Bicyclic allylic alcohols with an exocyclic double bond rearrange to bridged bicyclic ring systems (Eq. 48). (52) This type of reorganization leads to the ring system of the natural product cerorubenic acid III (Eq. 49). (63)



Two final examples of anionic oxy-Cope rearrangements in bicyclic systems are shown in Eqs. 50 (64) and 51. (65) These deep-seated rearrangements are believed to occur via an initial [3,3]-sigmatropic reaction.





### 3.1.1.3. Allylcycloalkenols

Alcohols of type **33**, which are obtained by 1,2 addition of allylic organometallics to cyclohexen-3-one, undergo the alkoxide-assisted Cope rearrangement to give ketones which are the formal 1,4 adducts of the original cyclic enone (Eq. 52).



The stereochemistry of this reaction has been studied extensively (Eq. 53). (22) The conditions are rather vigorous, requiring heating the potassium salt at 110° in diglyme for 38 hours. The reaction leads to side products from solvent decomposition when carried out in hexamethylphosphoric triamide. The reaction in Eq. 53 has been carried out with potassium hydride in diethylene glycol dimethyl ether at 70° in the presence of 18-crown-6 with slight changes in the *trans/cis* ratios.



This rearrangement can also be used to construct steroid side chains (Eq. 54);

(66) heating the potassium salt of **35a** in dioxane at 100° is required to effect rearrangement.



The *Z* isomer **35b** does not rearrange but cleaves under the same conditions, owing to a congested transition state **36** ( $R^1 = H$ ,  $R^2 = CH_3$ ) with an unfavorable quasi-1,3-diaxial interaction of the C-21 methyl group with the alkoxide.



A number of examples of fragmentation of homoallylic alcohols are known. (67) This side-chain reaction is discussed in more detail in the sections on fragmentation and common side reactions.

### 3.1.1.4. 1,2-Divinylcyclobutanols

Cyclobutanones such as **37** are readily available by spiroannulation of 2-cyclohexen-1-one with 1-lithiocyclopropyl phenyl sulfide. (68) Reaction of ketone **37** with vinylmagnesium bromide gives a mixture of epimeric alcohols **38** that can be separated by chromatography. The potassium salts of both

isomers undergo the anionic oxy-Cope rearrangement at room temperature (Eq. 55; see also Eq. 17). (24, 35, 69)



Ketone **39** reacts with vinyllithium, isopropenyllithium, or isobutenyllithium to produce alcohols **40**, **41**, or **42**, respectively (Eq. 56). Treatment of alcohol **40** with



potassium hydride in tetrahydrofuran leads to rapid formation of the *cis*- and *trans*-cyclooctenones **43a** and **44a** in a ratio of 79:21 in 62% yield. Similar treatment of alcohol **42** gives ketones **43c** and **44c** in a ratio of 67:33 in 49% yield. Alcohol **41**, on the other hand, gives ketone **44b** exclusively in 50% yield. (24) The different product ratios can be rationalized on the basis of steric effects in the chair- and boat-like transition states. Since the two olefinic groups are 95% *trans* to each other in all three alcohols, *cis/trans* interconversion must be rapid (cf. Eq. 17).

Ring expansion occurs easily when alkenyllithiums react with ketone **45** (Eq. 57). (24) Relief of ring strain and probably ideal overlap of the exocyclic double



bond with the cleaving bond make isolation of the alcohols prior to rearrangement difficult. The *trans* divinyl isomers in this case give cleavage products (Eq. 58).



An application of the anion-assisted divinylcyclobutanol oxy-Cope rearrangement to the synthesis of the ophiobolin skeleton (Eq. 59) indicates that the strain inherent in the four-membered ring allows the rearrangement of the lithium salt to proceed at low temperature. The tricyclic ketone is isolated in 65% yield after quenching at  $-78^{\circ}$  with methyl iodide to alkylate the enolate formed in the rearrangement. 70a,70b

Application to the total synthesis of the sesquiterpenes poitediol and 4-epipoitediol involves an acetylenic variant of this process (Eq. 60). (70c)



### 3.1.1.5. Open-Chain Systems

The few acyclic examples of anion-assisted oxy-Cope rearrangements allow a comparison of substituent effects and reaction conditions. For example, rearrangement of the simple substrates **46a** and **46b** (Eq. 61) (71) requires



heating the potassium salt to 85° in dimethoxyethane. Reaction of the phenylthio derivative **46c**, however, proceeds smoothly at room temperature in tetrahydrofuran because of the anion-stabilizing ability of the sulfur atom. (10) Similarly, the vinyl-substituted compound **46d** rearranges as the zinc salt in

tetrahydrofuran. (72) The double bond also promotes bond breaking in the transition state and thus accelerates the reaction. Both *threo* and *erythro* isomers of substrates **46a** and **46b** show 67–95% *E* selectivity. (73) Some of these results have been reviewed. (74)

Isomerization of the hydroxy acid **47** in the presence of an unspecified base proceeds under very mild conditions (Eq. 62). (75a)



A number of other examples involve the isomerization of methoxy-substituted substrates (Eq. 63). These reactions, in contrast to those in Eq. 61, require rather vigorous conditions. The potassium salts must be heated to 85° in dimethoxyethane to effect rearrangement.



Cleavage side reactions can be suppressed by decreasing the ionic character of the metal alkoxide bond. For example, the rearrangement in Eq. 64 proceeds normally



in diethyl ether in 71% yield, but the same reaction in tetrahydrofuran, which favors ionization, leads to cleavage. (75b) An extensive study of examples of the acyclic oxy-Cope process in a series also prone to cleavage has delineated some of the factors (such as steric congestion around the forming C

- C bond) that promote cleavage. (76) These factors are discussed in the section on side reactions.

When a 3-hydroxy-1,5-hexadiene is substituted on C-1 and C-2, the 1,2-disubstituted 5-hexenal is generally produced in good yield (Eq. 65). (77) Application to compounds



where  $R^1$  and  $R^2$  represent a ring are particularly useful. When a ring substituent is present, as in compound **49**, mixtures of diastereomers are obtained (Eq. 66). (78)



Equation 67 illustrates the application of such an anion-assisted oxy-Cope rearrangement to prostaglandin synthesis. (79) The potassium salts of alcohols **50** and **52** 



rearrange in dimethoxyethane at reflux and give the products in 56 and 58% diastereomeric excess. On the other hand, compound **51** rearranges at 0° with 0% diastereomeric excess. The identical diastereofacial selectivity observed when R = H and R = alkyl implies that the anion-assisted rearrangement must proceed in both cases via an axial alkoxide (Eq. 68). The rate enhancement by the phenyl substituent is to be expected since it is an anion-stabilizing group; the lack of diastereofacial selectivity observed is thus attributed to a change in mechanism to a stepwise process.



The anion-assisted rearrangement of borane **53** is followed by an interesting ring closure of the intermediate allylborane **54** (Eq. 69). (80) The mechanism of the second step is unknown.



Equation 70 illustrates a reaction that may proceed by an anion-assisted [3,3]-sigmatropic rearrangement involving a nitrogen–carbon double bond. Several examples of this type of rearrangement are known. (81)



An example of a carbanion-accelerated [3,3]-sigmatropic rearrangement is shown in Eq. 71. (82) The potassium enolate of ketone 55 isomerizes via a Cope process to approximately equal amounts of isomers 56 and 57. There are many examples of [1,3]-sigmatropic shifts, (83) reverse [2 + 2] cycloadditions, and electrocyclic [2  $\pi$  + 2  $\sigma$ ] cycloreversions that are accelerated by carbanions.



Cleavage of the trimethylsilyl ether **58** by fluoride ion does not result in a subsequent [3,3]-sigmatropic rearrangement (Eq. 72). (84) On the other hand, the in situ cleavage of a trimethylsilyl ether by potassium hydride (presumably containing trace amounts of potassium hydroxide) is known to result in a [3,3]-sigmatropic rearrangement. (48) A successful fluoride ion induced anion-assisted retro Diels–Alder reaction is shown in Eq. 151.



The single example of a double anion-assisted oxy-Cope rearrangement is used in a total synthesis of muscone (Eq. 73). (85)



#### 3.1.1.6. 3-Methylene-1-vinylcycloalkanols

The rearrangement of alcohol **59** to produce a ring-expanded product in 60% yield was initially proposed to involve cleavage of the alkoxide followed by Michael addition. However, formation of an eight-membered ring in such a facile process by a concerted, anion-assisted [3,3]-sigmatropic rearrangement seems a more likely possibility. The very mild conditions are understandable since the carbon–carbon bond cleavage required for the rearrangement is accelerated by the anion-stabilizing carbonyl group (Eq. 74). (86-88)

Other examples of this type of reaction include the rearrangement in Eq. 75. Often, the initial [3,3]-sigmatropic rearrangement product undergoes further basecatalyzed cyclization. Thus the transformation of ketone **60** (Eq. 76) to bridged ketone **61** in quantitative yield involves isomerization of the intermediate enolate followed by aldol cyclization.

Equation 77 illustrates the extension of the anion-assisted [3,3]-sigmatropic rearrangement to ethynyl carbinols. (89) This type of Cope rearrangement has also been studied with chiral substrates (Eq. 78). Isomerization of optically active 62 with retention of configuration is observed when the reaction is induced with potassium hydride in tetrahydrofuran. However, the

[3,3]-sigmatropic rearrangement leads to racemic product under protic conditions (sodium methoxide in methanol). Thus the







two alternative mechanisms described in Eq. 74 both appear to operate. (90, 91) Studies in this series have been reviewed. (92)

3.1.1.7. Cope Rearrangements that Contract Medium-Sized Rings The few examples of [3,3]-sigmatropic rearrangement reactions that lead to overall ring contraction involve nine-membered rings (Eq. 79). (30, 93-94a) Because the substrates are derived from 1,5-cyclooctadiene, a double bond not strictly necessary for the Cope rearrangement is always present. This double bond sometimes causes complications arising from [1,5]-hydrogen migrations and elimination reactions.



These eliminations are discussed in more detail in the section on Common Side Reactions. When alcohol **63a** is heated for 3 hours in benzene in a sealed tube, smooth conversion ensues, affording a mixture of 80% ketone **65** and 20% ring-contracted aldehyde **64a** (Eq. 79). This result reflects a kinetically favorable [1,5]-hydrogen shift that predominates over the oxy-Cope process. When alcohols **63a–c** are treated with 1.2 equivalents of potassium hydride in tetrahydrofuran at room temperature, the exclusive products are those of the anion-accel erated oxy-Cope rearrangement. Kinetic studies show that the anticipated acceleration of the two sigmatropic processes by a potassium alkoxide is greater for the [3,3] rearrangement (by factors of  $10^{10}-10^{11}$ ) as compared to the [1,5]-hydrogen shift ( $10^5-10^6$ ). (94b)

### 3.1.1.8. Rearrangements of Sulfur-Substituted Substrates

Since the acceleration of sigmatropic rearrangement reactions depends on the polarized bond-breaking step (Eq. 80), it is not surprising that the introduction of a carbanion-stabilizing group such as an alkylthio group facilitates the reaction. The rearrangement of the simplest system (Eq. 81) proceeds at room temperature. 21 Direct comparison of the rates of rearrangement with and without sulfur substitution is discussed earlier (Eq. 61).

$$\begin{array}{c} \downarrow 0^{-} \\ \downarrow SR \end{array} \longrightarrow \begin{bmatrix} \downarrow 0 \\ -\bar{\uparrow} SR \end{bmatrix}$$
(80)



Although the reaction of Eq. 82 possesses the potential for alternative [1,3]-sigmatropic rearrangements, only the [3,3]-sigmatropic rearrangement is observed. (95)



When the sulfur substituent is not directly on the carbon–carbon bond involved in the rearrangement, such as in alkoxide **66**, the substituent has little effect on the reaction rate (Eq. 83). 70 A related substituted system, however, does not rearrange but instead undergoes Michael addition to produce a cyclic ether (Eq. 84). (96)



3.1.1.9. Cope Rearrangements that Involve Aromatic Bonds The "aromatic Cope rearrangement" of 4-phenyl-1-butene has not been observed, presumably because of its high activation energy. Attempts to force participation of the aromatic ring in an anion-assisted [3,3]-sigmatropic process leads to either double bond isomerization (67a), or the alternative [1,3]-sigmatropic rearrangement (67b, Eq. 85). (97) Incorporation



of the 4-phenyl-1-butene system into a strained ring results in cleavage (Eq. 86). (54)



The participation of aromatic double bonds does occur in less highly resonance-stabilized systems. The naphthylcarbinol **68** isomerizes to produce the rearranged aldehyde in low yield (Eq. 87). (97) When the bond that cleaves is contained within a strained ring, the isomerization is faster and proceeds in higher yield; the less highly ionized sodium salt can be used in this reaction (Eq. 88). (54)



Participation of the furan ring is observed in the strained bicyclo[2.2.1] system (Eq. 89). 54,56 No examples of rearrangements involving simple furans are known. Unsuccessful participation of a furan in a 1,3-sigmatropic shift is described in Eq. 169.


# 3.1.1.10. Solvent-Induced [3,3]-Sigmatropic Rearrangements

The formation of a fully charged alkoxide such as **69** is certain to greatly accelerate a reaction like the Cope rearrangement. Partial ionization of the alcohol proton by hydrogen bonding to a basic solvent as in complex **70** should also accelerate the Cope rearrangement although less strongly.



When alcohol **71** is heated in the presence of varying amounts of the polar solvent *N*-methyl-2-pyrrolidone, a small increase in the rate of the [3,3]-sigmatropic shift and a great decrease in the fragmentation side reaction (Eq. 90) are observed. (98)



A similar effect is seen in the [3,3]-sigmatropic rearrangement of alcohol **72** (Eq. 91), which under otherwise identical conditions rearranges in *n*-decane, *N*-methylpyrrolidinone, and hexamethylphosphoric triamide in 85%, 90%, and 100% yields, respectively. (99)



Alcohol **73** only undergoes fragmentation when treated with base (Eq. 92). (100) No reaction occurs on pyrolysis of its trimethylsilyl ether at 150°. On the other hand, heating alcohol **73** in 1-methyl-2-pyrrolidinone at 120–130° leads to the oxy-Cope rearrangement in 25% yield. No applications of such solvent effects to the other classes of sigmatropic rearrangements have been reported. It is likely that such effects will also be seen in other symmetry-allowed processes.



### 3.2. [5,5]-Sigmatropic Rearrangements

Rearrangement of the potassium salt of alcohol **74** proceeds at room temperature to yield a 14-membered cyclic trienone in 90% yield (Eq. 93). (101) This process involves



an oxyanion-assisted [5,5]-sigmatropic rearrangement which results in an eight-carbon ring expansion (Eq. 94, pathway A). The reaction conditions are the same as (or slightly milder than) those in the analogous [3,3]-sigmatropic rearrangement (e.g., Eq. 28). An alternative pathway involving two sequential anion-accelerated [3,3]-sigmatropic rearrangements (pathway B) was initially considered unlikely on the basis of kinetic arguments: the overall rate of the reaction in Eq. 94 ( $t_{1/2} = 1.8$  minutes at 25°) was thought to be much too high to proceed via enolate **75**. (102) The second stage of pathway B in Eq. 94 would involve a carbanion-accelerated



[3,3]-sigmatropic rearrangement. Pathway B is implicated in generating part of the products. (82) A few other examples of rearrangements involving assistance by carbanions are discussed in the section on Miscellaneous Reactions.

An anion-assisted [5,5]-sigmatropic rearrangement is the key step in a synthesis of the 15-membered cyclic ketone muscone (Eq. 95). (40)



### 3.3. [1,3]-Sigmatropic Rearrangements

### 3.3.1.1. Allylcarbinols

The [1,3]-sigmatropic rearrangement of homoallylic alcohols (Eq. 96) is a major class of concerted reactions allowed by the Woodward–Hoffmann



rules. Substrate and product in Eq. 96 correspond to the two possible regioisomers resulting from addition of an allylic anion to a carbonyl group. Because of the widespread use of the Grignard reaction, this rearrangement has been well studied.

Addition of crotylmagnesium bromide in tetrahydrofuran to hindered ketones such as di-*tert*-butyl ketone generally leads only to isomer **77** (Eq. 97). Alcohol **76** 



can be prepared by another route; it rearranges to isomer **77** as the magnesium bromide salt at –78° in tetrahydrofuran or at higher temperatures in diethyl ether. (18) Solvent polarity, counterion effects, and steric hindrance all contribute to rate acceleration in the manner discussed for [3,3]-sigmatropic rearrangements. Another example is shown in Eq. 98. (97) An alternative "reverse Grignard" mechanism involving fragmentation to the carbonyl compound and the allylic anion has been proposed. (103) This mechanism, however, does not account for the success of the rearrangement



in macrocyclic ring expansions (Table XVI) or the isomerization in protic solvents (Eq. 99). (104) Anion-assisted [1,3]-sigmatropic rearrangements are, however, more prone to fragmentation side reactions than the corresponding Cope rearrangements. (103)



### 3.3.1.2. 3-Alkoxyalkyl-1,4-dienes

The rearrangements of the carbonyl adducts to 1,3-pentadienyl anions form a related class of [1,3]-sigmatropic rearrangements. Alcohol **78** isomerizes smoothly as the lithium salt in tetrahydrofuran at reflux or within 5 minutes at 0° as the potassium salt (Eq. 100). (105) The additional double bond facilitates



polarized bond breaking. Thus the isomerization of the analogous system where one of the vinyl groups is replaced by a methyl group (Eq. 98) requires prolonged heating of the potassium salt in hexamethylphosphoric triamide.

The effect of solvent polarity on the isomerization is illustrated for salt **79** (Eq. 101). (106) When an alternative [3,3]-sigmatropic rearrangement pathway is possible, this mode of reaction is preferred (Eqs. 102' 103). (105, 106)





The competing fragmentation pathway, which predominates when the potassium salt is employed, can be suppressed by use of the less ionic lithium salt (Eq. 104). (107)



### 3.3.1.3. 2-Vinylcyclopropanols

One of the best known examples of a thermal [1,3]-sigmatropic rearrangement is the vinylcyclopropane rearrangement. (108) High temperatures (frequently 500–600°) are required for this reaction. Placement of an alkoxy substituent on the cyclopropane ring allows the reactions to proceed at room temperature (Eq. 105). (109)



A synthesis of cyclopropanols has been developed specifically to exploit this reaction. Addition of carbenoids to dienes leads to  $\beta$  -chloroethyl ethers of the required cyclopropanols (Eq. 106). These are cleaved by reaction with excess *n*-butyllithium (5 equivalents) in diethyl ether at room temperature to produce the corresponding lithium alkoxides. (110) In some reactions, these salts

isomerize spontaneously to the corresponding cyclopentanols (Eq. 105). Otherwise, hexamethylphosphoric triamide is added, and the isomerization is complete within 1–2 hours at 25–50°.



Except for substrates with substituents *cis* to the vinyl group, the reactions proceed with high selectivity. For example, [1,3]-sigmatropic rearrangement of salt **80** leads exclusively to *anti*-bicyclo[2.2.1]hept-2-en-7-ol (Eq. 107). (26)



The scope of the anion-assisted vinylcyclopropane rearrangement, however, is limited by the availability of cyclopropanols. An alternative route involving direct oxidation of lithiocyclopropanes has been used, (111) but its potential has not been extensively explored. An interesting extension of the process uses a carbanion adjacent to the bond that shifts to promote the [1,3]-sigmatropic process (Eq. 108). (83) This



rearrangement is faster than the analogous oxyanion-induced process, but is less stereochemically selective. It is synthetically useful because the anionic product can be trapped with electrophiles. For example, the rearranged carbanion **81** is trapped by alkylation with *tert*-butyl bromoacetate. Treatment of sulfone **82** with diazabicycloundecene (DBU) induces elimination to conjugated ester **83** (Eq. 109). (83)



#### 3.3.1.4. 2-Vinylcyclobutanols

In contrast to the dearth of methods for the synthesis of cyclopropanols, there are two well-developed routes to the 2-vinylcyclobutanols required for anion-assisted rearrangement. One involves addition of lithiocyclopropanes such as **84** to enones followed by acid-induced ring expansion (Eq. 110). (68)



The second is based on [2 + 2] cycloadditions of olefins to vinylketenes (Eq. 111). (112) In addition, cyclobutanones and cyclobutanols are much more stable



than their three-membered analogs. Reduction of aryl ketone **85a** with 2 equivalents of lithium tri(*sec*-butyl)borohydride in tetrahydrofuran at  $-78^{\circ}$  gives an anion which rearranges to the corresponding cyclohexanol on warming to room temperature (Eq. 112). The anion obtained by addition of methyllithium to ketone **85a** also isomerizes at room temperature (Eq. 112). (112)



By contrast, the anion derived by reduction of methyl ketone **85b** (Eq. 113) does not rearrange under these conditions, but requires conversion of the borate complex



with excess methyllithium to the free lithium salt, followed by addition of hexamethylphosphoric triamide and heating to 70° for 7 hours. The lithium salt produced by addition of *n*-butyllithium to ketone **85b** (Eq. 113) is also stable in tetrahydrofuran at room temperature and requires warming with hexamethylphosphoric triamide in order to undergo the [1,3]-sigmatropic rearrangement. (112) The effect of the counterion and solvent on the rate and the beneficial influence of an additional anion-stabilizing group (the phenyl group) in ketone **85a** are typical of the isomerization processes described in this chapter.

In the more congested system shown in Eq. 114, rearrangement of the lithium salt in tetrahydrofuran and hexamethylphosphoric triamide requires heating to 70° for 90 hours; the potassium salt rearranges rapidly at room temperature under these conditions. (112)



Complex substrates often give mixtures of isomers (Eq. 115), (112) (Eq. 116), (113) although the good overall yield and unique nature of this synthetic transformation make the method a valuable one.



A [1,3] shift has been applied in the synthesis of anthracyclinones (Eq. 117). (114) The lithium salt **86**, formed in situ from a cyclohexenyllithium precursor, undergoes [1,3]-sigmatropic rearrangement and subsequent aromatization in 63% yield. Rearrangement under relatively mild conditions (lithium salt in tetrahydrofuran) is probably due to relief of strain in the cyclobutane ring.



### 3.3.1.5. 1-Substituted 2-Alkenols

Equation 118 shows the conversion, by [1,3]-sigmatropic rearrangement, of the 1,2 adduct of an anion to an  $\alpha$ ,  $\beta$  -unsaturated



ketone into the 1,4 adduct. Examples of this useful rearrangement are known for five-, six-, and seven-membered rings. 21,115–120 For the reaction to succeed, sufficient anion-stabilizing groups must be present on the C - C bond that is cleaved. The isomerizations in Eq. 119 require the formation of the potassium salts in hexamethyl-phosphoric triamide,



whereas a related substrate that has the additional anion-stabilizing phenyl ring undergoes the [1,3] shift as the lithium salt (Eq. 120). (115, 119) A



few examples of acyclic systems are known (Eqs. 121, 122), but the yields are uniformly low. (115, 120, 121) Fragmentation is a common and serious side reaction in this particular variant of a [1,3]-sigmatropic shift.





The loss of stereochemistry observed in the [1,3] shift of the chiral ketal **86a** provides evidence for a nonconcerted rearrangement (Eq. 123). (50) A mechanism involving an intermediate anion is suggested.



There are probably many more classes of substrates that will undergo this type of [1,3] isomerization. Examples are known where the migrating group is tin (117) or a protected cyanohydrin derivative. (118)

### 3.3.1.6. Macrocyclic Systems

The thermal oxy-Cope rearrangement of certain 1,5-dienes is an unfavorable process. Pyrolysis of the trimethylsilyl ether of alcohol **87** (R = H) at 280° gives the product **88** of a [3,3] shift in only 11% yield (Eq. 124). (122)



The major products, isolated in 80% yield, are the [1,3] shift products 89 (*cis:trans* = 83:17). Treatment of alcohol 87 (R = H) with potassium hydride in hexamethylphosphoric triamide leads to rearrangement at room temperature. The reaction is complete in 3 hours, and the ratio of products 88 and 89 is similar to that of the thermal reaction except that the *cis/trans* ratio in ketone 89 is 60:40. (122, 123) This result is typical of a number of medium and large ring substrates, where for conformational reasons the [3,3]-sigmatropic shift is less favorable than the [1,3] shift.

If the bond that shifts is benzylic (Eq. 125) (124) or substituted with functionalities known to stabilize carbanions (Eq. 126), [1,3] isomerization also occurs, but the yields are modest (20–94%). (See Table XVI for more examples.)



The effect of substituents on the relative rates of [1,3] shifts vs. [3,3] shifts in

alcohols **90** is shown in Eq. 127. (125) Significant effects are seen only for substituents on the terminus of the vinyl group. In addition, a major side reaction in the isopropyl derivative **90e** is fragmentation to give ketone **93**, presumably derived by proton transfer in an intermediate allyl anion (Eq. 128). (125)



### 3.3.1.7. Bridged Bicyclic Carbinols

The [1,3]-sigmatropic rearrangement is especially facile and high yielding in rigid systems, which presumably are most favorable for orbital overlap. An early example was discovered during an attempted base-catalyzed alkylation of the alcohol **94** (Eq. 129). (126) The anion-assisted reaction is 10<sup>4</sup> times



faster than the thermal process. The corresponding ether requires heating to 170°. A detailed study of another example (Eq. 130) has been reported. (127) The attempted isomerization of alcohol **95** gives no detectable product of a [1,3] shift (Eq. 131),



probably because of very poor overlap of the migrating  $\sigma$  bond with the allylic framework. (128) Bicyclic carbinol **96** does not undergo the possible [3,3]-sigmatropic rearrangement, but instead gives the [1,3] shift product with predominant inversion of configuration at the migrating center, as predicted by orbital symmetry (Eq. 132). (129) A number of 7-substituted bicyclo[2.2.1]hept-2-en-7-ols also react predominantly by [1,3] shifts (Eq. 133). (28)





### 3.3.1.8. 1,1-Dialkoxy-Substituted Compounds

All of the anion-assisted reactions discussed so far have only one alkoxide substituent on the bond that breaks. When methyllithium is added to carboxylic acid **97**, a 1,1-dialkoxy intermediate **98** is formed (Eq. 134). (130) These species are known to be stable toward expulsion of lithium oxide to give ketones. In the homoallylic system **98**, [1,3]-sigmatropic rearrangement occurs at a rate that appears to be higher than would be expected if only



one alkoxylithium substituent were present, but only two examples of this variant are known. (130, 131)

### 3.3.1.9. [1,5]-Sigmatropic Shifts

The effect of an alkoxide substituent on an adjacent C - H bond has been calculated to result in substantial bond weakening. (11) The potassium salt of alcohol 99 undergoes a [1,5]-hydrogen shift at ambient temperature (Eq. 135). (30) The anionassisted



[1,5]-hydrogen shift is accelerated by a factor of 10<sup>6</sup> over the corresponding purely thermal rearrangement, which requires heating to 160° for 3 hours.
Other examples suggest that the hydrogen shift reaction is indeed general. (30, 121) Base-induced side reactions, usually involving transannular deprotonations and double-bond isomerizations, are also observed and are

discussed in the section on Side Reactions.

The anion-assisted [1,5]-sigmatropic shift of a methyl group is illustrated in Eq. 136. (132) Other examples involving migration of alkyl, vinyl, and cyclopropyl groups are listed in Table XIX. The thermal uncatalyzed rearrangement of alcohol 100 requires heating to 170°.



Because of the reluctance of the parent 7-vinylbicycloheptene **24** (n = 1,2; Eq. 39) to undergo a [3,3]-sigmatropic shift, the isomerization of compound **101** has been investigated to explore a possible [1,5]- or [3,5]-carbon shift pathway. Only the [3,3]-sigmatropic shift is observed (Eq. 137). (133) Similarly, alcohol **102** rearranges only via a [1,3]-sigmatropic shift (Eq. 138). (123)





# 3.4. [2 + 2] Cycloreversions

The fragmentation of a four-membered ring to give two olefins is a symmetry-forbidden process. When lithium salt **103** is heated to 160–200°, cycloreversion occurs to produce an enolate and ethylene (Eq. 139). (29) This reaction is probably quite general although only a few examples are known. (29, 134)

An alternate path involves the cleavage of only one bond (Eq. 140). (135)



It is also possible to induce the [2 + 2] cycloreversion with a carbanion (Eq. 141). (136) An example of an anion-assisted [2 + 2] cycloreversion involving expulsion of cyanate is shown in Eq. 142. (137)



#### 3.5. [2 + 4] Cycloreversions

The reverse Diels–Alder reaction is of considerable synthetic and mechanistic interest. The thermal reaction usually requires high temperatures. Placement of an oxyanion substituent on one of the bonds that is cleaved generally permits the reaction to be carried out at temperatures below 100° (Eqs. 143' 144). (138, 139)



Careful studies of related systems that produce anthracene derivatives have refined the characteristics required for successful reaction (Eq. 145). (140) The diene



partner is most commonly an aromatic system, which contributes to the driving force for the reaction. The potassium salt of alcohol **104** is an example where the anion-assisted reverse Diels–Alder reaction fails (Eq. 146). (140) Ketone **105** (Eq. 147) and carbanion **106** (Eq. 148) undergo fragmentation rather than [4 + 2] cycloreversion. (140)





The reverse Diels–Alder reaction of the sodium salt of *endo*bicyclo[2.2.1]hept-5-en-2-ol (**107**) proceeds smoothly in ether at room temperature (Eq. 149). The *exo* isomer does not react under the same conditions. (**141**)

Formation of carbanion **108** leads to a rapid retro Diels–Alder reaction at 25° (Eq. 150). (142) The placement of an anionic substituent on the latent diene portion of the molecule also accelerates the retro Diels–Alder reaction (Eq. 151). (142) The relatively





mild conditions of the anion-assisted [2 + 4] cycloreversion permit the use of a suitable diene as a protecting group for a double bond during synthesis. (143) The example in Eq. 151 is unusual in that the alkoxide substituent is generated by the cleavage of a trimethylsilyl ether with fluoride ion. An unsuccessful attempt to induce an anion-assisted oxy-Cope reaction by this method is given in Eq. 72.

The anion-assisted reverse intramolecular Diels–Alder reaction of alcohol **109** is successful only when the substituent is a phenyl group (Eq. 151). When the substituent is hydrogen or a methyl group, no reaction occurs, implying that conjugation in the transition state is important. (144)



### 3.6. Electrocyclic [4 p + 2 $\sigma$ ] Ring-Opening Reactions

The single known example of an orbital symmetry allowed anion-assisted electrocyclic ring opening is shown in Eq. 25, but there is still the possibility that simple cleavage is responsible for the process. (31) Alcohol **110**, on heating to 240° in the presence of base undergoes an intramolecular Diels–Alder reaction instead of  $[4 \pi + 2 \sigma]$  ring opening (Eq. 153). (145) Nevertheless, the reaction may be possible in favorable situations.



## 3.7. Electrocyclic [2 p $\,$ + 2 $\sigma$ ] Ring-Opening Reactions

The  $[2 \pi + 2 \sigma]$  ring-opening reaction is more common in strained cyclobutane rings. Examples of acceleration by oxyanions (Eq. 154) (146) and carbanions (Eqs. 26 and 155) 32 are known.



The thermal ring opening of cyclobutene derivatives has been thoroughly studied as to their conrotatory or disrotatory nature, but the anionic version of this reaction has not.

### 3.8. Miscellaneous Reactions

Several examples of apparent anion-accelerated reactions have appeared which do not fit into any of the previously discussed categories. One reaction involves a nitrogen-centered anion which undergoes a rapid [1,3]-sigmatropic shift (Eq. 156). (147) This observation suggests that amide anion assisted rearrangements may be worthy of investigation.



Epimerization of ester **111** is accompanied by a vinylcyclopropane-type [1,3]-sigmatropic shift which is apparently facilitated by the enolate (Eq. 157). (148) This [1,3] shift is an example of an emerging new class of reactions wherein the anionic substituent is vinylogously adjacent to the cleaving C - C bond.



The reaction of Eq. 158 is an example of an anionic oxy-Claisen rearrangement. (149) This process proceeds by a heterolytic cleavage pathway (structure **112**)



characteristic of the rearrangements discussed in this chapter. The placement of the anionic substituent is different from that in the ester enolate Claisen rearrangement of substrates such as **113**. (6) Anionic substituents may be present in the framework of systems rearranging by other sigmatropic pathways (e.g. Eq. 159) (150) but they do not provide the unique reaction acceleration characteristic of the reactions discussed in this chapter.



# 4. Common Side Reactions

Most anion-assisted sigmatropic rearrangements take place in polar aprotic solvents such as tetrahydrofuran and hexamethylphosphoric triamide with alkoxide salts of potassium or sodium. These strongly basic conditions sometimes lead to elimination reactions or double bond isomerization. In addition, a very common side reaction is simple fragmentation at the C - C bond adjacent to the alkoxide substituent. Competition between [3,3]-, [1,3]-, and [1,5]-sigmatropic processes is often observed; the ratios of products can sometimes be varied with reaction conditions.

## 4.1. Eliminations

Strongly basic alkoxide solutions at higher temperatures can cleave tetrahydrofuran. (75b) In such cases one must use 1,2-dimethoxyethane (glyme) or bis(2-methoxyethyl) ether (diglyme). The other commonly used solvent, hexamethylphosphoric triamide, is also degraded at higher temperatures.

Elimination is likely to occur when the desired rearrangement is sluggish (Eq. 160). (22)



Another example, involving direct elimination of an alkoxide group followed by a reverse Diels–Alder reaction, is shown in Eq. 161. (62)



Attempts to carry out the anion-assisted oxy-Cope rearrangement with substrate **114** leads only to decomposition because of elimination of the ethoxy group. (100)



# 4.2. cis/trans Isomerizations

Alkoxide-induced *cis/trans* isomerizations, such as that of alcohol **115** (Eq. 162), often occur under the same conditions as a related sigmatropic shift and sometimes precede other rearrangements. (113) Examples are collected in Table XXVI.



### 4.3. Double Bond Isomerizations

117

A common side reaction is the isomerization of double bonds under the strongly basic reaction conditions. The anion-assisted retro Diels–Alder reaction of alcohol **116** (Eq. 163) leads to increasing amounts of the more stable 1,2-dihydroanthracene at longer reaction times. (140) Isomerizations often appear to occur in an intramolecular sense (Eq. 164). (121) The attempted [3,3]-sigmatropic rearrangement of alcohol **117** leads to ketone **118** by double bond isomerization to the enolate position (Eq. 165). (97)





Sometimes double bond isomerization facilitates the overall reaction because it regenerates an aromatic system (Eq. 166). (113)

118



### 4.4. Fragmentations

The same weakening of the C - C bond in the transition state that causes the rate acceleration in sigmatropic processes frequently leads also to direct fragmentation (Eq. 167). (75b) This problem can often be obviated by using less vigorous conditions,



such as a less highly dissociated counterion (cf. Eq. 104). Fragmentation often results from an unfavorable steric disposition for rearrangement (e.g., Eq. 168) or an



unusually favorable situation for proton transfer. For example, in contrast to the successful [1,3] rearrangement of the parent secondary alcohol (Eq. 166), the tertiary alcohol **119** gives only fragmentation (Eq. 169) perhaps because of intramolecular enolization of the intermediate. (113)



The propensity for fragmentation in compounds **120** decreases in the order  $R = C_6H_5CH_2 > - C(CH_3)_2C = CH_2 > - CH(CH_3)CH = CH_2 > = CH_2CH = CH_2 > - CH_2C(CH_3) = CH_2$  (Eq. 170). (76)



A comprehensive study of the cleavage of alcohol **121** (Eq. 171) with different bases, solvents, and steric environments is particularly relevant. The previously discussed



factors that favor increased reaction rates for anion-assisted rearrangements also accelerate fragmentations. These include increased charge density on the alkoxide ( $K^+ > Na^+ > Li^+$ ) and more polar solvents. (151)

A practical application of anion-induced alkoxide fragmentation involves the cleavage of various diallylcarbinols (Eq. 172). (67) The fragmentation process has been



used as a synthetic method to prepare  $\alpha$  - and  $\beta$  -damascone,  $\beta$  -damascenone, and  $\beta$ -termerone (Eq. 173). (76) The oxidative cleavage shown in Eq. 174 probably involves the reaction of an enolate with molecular oxygen. (123)



# 5. Experimental Conditions

In most reactions, formation of an alkoxide intermediate is required prior to the thermal rearrangement step. Since reaction rates are in the order  $K^+ > Na^+ > Li^+$ , the formation of potassium salts with potassium hydride is the most important procedure. A detailed paper describing potassium hydride has appeared (152) and a review (153) discusses its applications. Sodium salts are more rarely employed but generally are produced in a similar manner using sodium hydride. Lithium salts are formed most conveniently by reaction of alcohols with *n*-butyllithium. Often, however, lithium alkoxides can be formed in situ by the reaction of an appropriate carbonyl compound with an alkyllithium reagent, thereby generating the substrate as its alkoxide directly. Examples of all of these methods are provided.

### 5.1. Potassium Hydride

## 5.1.1.1. Storage and Transfer (152)

Potassium hydride is currently obtained as a dispersion in mineral oil containing 20–35% of the hydride by weight. Although pure potassium hydride is a white powder, most commercial samples are gray, presumably because of traces of unreacted potassium. Potassium hydride reacts slowly with oxygen but can be stored in glass or polyethylene bottles under an inert atmosphere, sealed to prevent exposure to oxygen and moisture.

Transfers of the potassium hydride dispersion may be made quickly in air without difficulty, but for prolonged handling a glove bag (nitrogen or argon) is desirable. Routine transfers are performed directly from the storage container. Two holes just sufficient to accept an 18–19 gauge hypodermic needle are punched in the polyethylene container near the screw cap and can be capped with a small rubber stopper. Through one hole a stream of dry nitrogen is introduced with a short needle, providing a backflush during transfer. It is convenient to put a magnetic stirbar in the container and stir a few minutes to get a homogeneous suspension. The dispersion is transferred using a disposable pipet having a 2–3 mm orifice. The container is then purged with nitrogen, and the holes are capped and sealed with paraffin tape.

Utensils and glassware coated with the potassium hydride dispersion can be cleaned by rinsing with a 10% solution of ethanol in pentane. **CAUTION!** Under no conditions should the potassium hydride dispersion be exposed to water; it will ignite. Disposal of organic solvents containing even traces of potassium hydride in sinks will produce a fire.

# 5.1.1.2. Standardization of Potassium Hydride (152)

A weighed sample of the potassium hydride dispersion (1–2 g) is placed in a flask equipped with a Teflon-covered magnetic stirring bar, condenser, and

injection port capped with a rubber septum. The apparatus is purged with nitrogen and connected through traps to a gas-measuring device. The flask is immersed in a water bath and, with stirring, 20 mL of 2-butanol is added, dropwise at first, until hydrogen evolution moderates. The potassium hydride present is determined by a standard gas law calculation; one mole of hydrogen is liberated from each mole of the hydride.

The resulting solution in the flask can be diluted with water and titrated to a phenolphthalein end point. Substantial excesses (>5%) of total base over hydride base (as calculated from the gas evolved) indicate significant hydrolysis of the original potassium hydride sample.

## 5.1.1.3. Removal of the Oil

The potassium hydride is placed in the apparatus described above, with a bubbler replacing the gas-measuring device. Dry pentane, ether, or similar solvent (5–10 mL/g of dispersion) is added. The mixture is stirred briefly and allowed to settle with occasional tapping; the solvent–oil solution is then removed by syringe. Three such washings remove all but traces of the oil. To facilitate removal of the solvent, an 18–20 gauge flat-tipped needle 20–25 cm long is used. The wash solvent may contain traces of potassium hydride and must be treated with ethanol before disposal. Residual solvent is removed under vacuum or with a stream of nitrogen or argon.

# 5.1.1.4. Purification of Potassium Hydride with Iodine (42)

Commercial potassium hydride is prepared by reduction of metallic potassium and may contain variable amounts of impurities such as unreacted elemental potassium and its oxidation product potassium superoxide. Such impurities do not necessarily cause problems but can be removed by a simple purification with iodine. This treatment presumably converts elemental potassium into potassium iodide, and potassium superoxide into potassium iodide and oxygen. Commercial potassium hydride (35% suspension in mineral oil) is washed three times with petroleum ether (~4 mL/10 mmol KH) and then resuspended in the desired solvent (THF, DME, ether) at 0.1–1.0 M. The resulting potassium hydride suspension can either be titrated with a solution of iodine in the desired solvent (0.1–0.5 M) until the purple–orange iodine color persists for at least 5 minutes or treated dropwise with a standard quantity of iodine (10 mol %) in the desired solvent. The suspension of potassium hydride and potassium iodide thus generated can be employed in any subsequent reaction.

# 5.2. Solvents

The most suitable solvents for reactions involving potassium hydride at or below room temperature are ethers, especially tetrahydrofuran, glyme, or diglyme. Potassium Hydride does not dissolve in these solvents. Many reactions of potassium hydride are sluggish in hydrocarbon solvents such as pentane or benzene. Hexamethylphosphoric triamide is stable to potassium hydride but undergoes decomposition at temperatures above 70°. **CAUTION**: *Hexamethylphosphoric triamide has been implicated as a potent animal carcinogen; it must be handled only with good ventilation and while wearing gloves.* Dimethyl sulfoxide is rapidly metalated by potassium hydride and forms the potassium dimsyl anion. Dimethylformamide is reduced by potassium hydride and yields dimethylamine upon hydrolysis.

# 6. Experimental Procedures

6.1.1.1. cis-2-Hydroxy-5-methylbicyclo[4.4.0]deca-4,7-diene ([1,3]-Sigmatropic Rearrangement of a 2-Vinylcyclobutanol) (112) A solution of *cis*-8-methyl-8-vinylbicyclo[4.2.0]oct-2-en-7-one (0.162 g, 1 mmol) in 8 mL of THF was treated with  $Li(s - Bu)_3$  BH solution (1.0 M in THF, 1.15 mmol) for 15 minutes. Methyllithium solution (1.16 M in ether, 1.0 mL, 1.16 mol) and 5 mL of HMPA were added and the mixture was heated at 70° for 15 hours. The mixture was cooled to room temperature and treated with 5 mL of 15% NaOH and 3 mL of 30% H<sub>2</sub>O<sub>2</sub> at 25° for 15 hours. The mixture was diluted with ether, the organic layer was washed with water and saturated aqueous NaCl, dried over MgSO<sub>4</sub>, filtered, and concentrated to afford 0.191 g of a pale yellow oil. Column chromatography on silica gel (elution with ether-hexane) gave 0.137 g (83%) of cis-2-hydroxy-5-methylbicyclo[4.4.0] deca-4,7-diene (85:15 mixture of epimers) as a pale yellow oil. <sup>1</sup>H NMR ( CDCl<sub>3</sub>) δ 5.66–5.77 (m, 2H), 5.21–5.26 (m, 1H), 3.86 (dd, J = 6.7, 12.9 Hz, 1H), 2.79 (m, 1H), 1.73 (m, 3H), 1.47–2.14 (m, 7H); IR (film) 3340, 3020, 2920, 2830, 1665, 1645, 1430, 1370, 1030, 890, 855, 795, 750, 725 cm<sup>-1</sup>. HRMS, m/z calcd for  $C_{11}H_{16}O$ , 164.1201; found, 164.1192.

# 6.1.1.2. Bicyclo[5.3.1]undec-1(11)-en-4-one ([3,3]-Sigmatropic Rearrangement of a 1,2-Divinylcyclobutanol) (24)

A mixture of diastereomeric 1-ethenylspiro[3.5]non-5-en-1-ols (0.473 g, 2.88 mmol) in 10 mL of dry THF was added to a stirred suspension of hexane-washed potassium hydride (0.483 g of 24% KH in oil, 2.90 mmol) in 30 mL of dry THF at 25° under nitrogen. After 10 minutes at 25°, the reaction was quenched with 1 mL of saturated aqueous NH<sub>4</sub>Cl , filtered through a glass wool plug, dried (MgSO<sub>4</sub>), and concentrated under vacuum. The residue was purified by flash chromatography (18 g of silica gel, 5% ethyl acetate/hexane) to afford 0.379 g (80%) of the title compound as an oil. <sup>1</sup>H NMR (CCl<sub>4</sub>)  $\delta$  5.10 (br, s, 1H), 1.0–3.0 (m, 15H); IR (CCl<sub>4</sub>) 2940 (s), 1700, 1450 (m), 1080 (m), 900 (m) cm<sup>-1</sup>. MS, m/z 164 (M<sup>+</sup>), 146, 136, 107, 94 (base), 79, 57, 43.

### 6.1.1.3. 6,10-Dimethyl-6-trimethylsilyloxyundeca-1,3,9-triene

([1,3]-Sigmatropic Rearrangement of a 3-Alkoxyalkyl-1,4-diene) (107) *n*-Butyllithium solution was added dropwise to a cold (0°) solution of 4,8-dimethyl-3-vinylnona-1,7-dien-4-ol (9.70 g, 0.05 mol) and triphenylmethane (0.150 g) in THF (300 mL) over 15 minutes until a faint pink color was observed (21 mL of 2.4 M *n*-butyllithium in hexane was required). The mixture was heated at reflux for 2.5 hours, then chlorotrimethyl-silane (8.15 g, 0.075 mol) was added, and the mixture was heated for an additional 2.5 hours. Workup and distillation (130°, 0.3 mm) gave 6.5 g (98%) of 6,10-dimethyl-6-trimethylsilyloxyundeca-1,3,9-triene. <sup>1</sup>H NMR ( CDCl<sub>3</sub>)  $\delta$  6.34 (dt, *J* = 16.7, 10.3 Hz, 1H), 6.07 (dd, *J* = 15.2, 10.3 Hz, 1H), 5.07 (dt, *J* = 15.1,
7.5 Hz, 1H), 4.96–6.12 (m, 2H), 2.27 (d, J = 7.5 Hz, 2H), 2.06 (dt, J = 8.5, 7.5 Hz, 2H), 1.70 (s, 3H), 1.63 (s, 3H), 1.41–1.51 (m, 2H), 1.22 (s, 3H), 0.14 (s, 9H); IR (film) 2950, 1650, 1460, 1360 cm<sup>-1</sup>. MS, m/z 201, 200, 199, 131, 73, 69.

6.1.1.4. cis-(4-Vinyl-3-cyclopentenyl)acetaldehyde ([3,3]-Sigmatropic Rearrangement Leading to Contraction of a Medium-Sized Ring) 94 Potassium hydride (15.0 g of a 23.6% suspension, 88 mmol) was placed in a 250-mL, round-bottomed flask, blanketed with nitrogen, and washed free of oil with anhydrous ether ( $2 \times 50$  mL). Additional dry ether (75 mL) was added and the slurry was stirred at 0° while cyclonona-2,4,7-trienol (10.0 g, 73.5 mmol) dissolved in 75 mL of ether was added dropwise. After the addition, the solution was allowed to warm to room temperature and stirred for 4 hours. The reddish-brown mixture was rapidly poured into a stirred mixture of 10% aqueous NH<sub>4</sub>Cl (100 mL) and ice (50 g). The organic phase was separated, washed with saturated aqueous NaHCO<sub>3</sub> (50 mL) and brine (50 mL), dried, and concentrated to yield 9.9 g (99%) of

*cis*-(4-vinyl-3-cyclopentenyl)acetaldehyde. <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  9.78 (t, *J* = 1 Hz, 1H), 6.0–5.35 (m, 2H), 3.5–2.0 (m, 6H); IR (film) 1720, 1620 cm<sup>-1</sup>. HRMS, calcd for C<sub>9</sub>H<sub>12</sub>O 136.0888; found 136.0892.

# 6.1.1.5. Anionic Rearrangement of Cyclohepta-2,4-dien-1-ol ([1,5]-Hydrogen Shift) (121)

A slurry of KH (from 500 mg of a 40% dispersion, 5 mmol) was prepared in dry THF (25 mL) under nitrogen, cooled to  $-5^{\circ}$ , and cyclohepta-2,4-dien-1-ol (150 mg, 1.36 mmol) in THF (2 mL) was added. The mixture was stirred for 14 hours at  $-5^{\circ}$ . Aqueous NH<sub>4</sub>Cl solution was introduced slowly to quench the excess KH, the aqueous layer was extracted with ether (2 × 50 mL), and the combined ether extracts were washed with water and brine prior to drying. Solvent removal followed by distillation yielded 135 mg (90%) of a mixture of cyclohepten-3-one and cyclohepta-3,5-dienol in a ratio of 3:2. Purification was accomplished by VPC on a 4-ft × 0.25-in. 10% SE-30 column at 70°. Cyclohepten-3-one: <sup>1</sup>H NMR ( CDCl<sub>3</sub>)  $\delta$  6.0–5.5 (m, 2H), 3.1–3.0 (m, 2H), 2.4–1.4 (m, 6H); IR (film) 3020, 2950, 2860, 1710, 1300, 1215, 1120, 955, 930, 890, 680 cm<sup>-1</sup>. Cyclohepta-3,5-dienol: <sup>1</sup>H NMR ( CCl<sub>4</sub>)  $\delta$  6.0–5.5 (m, 4H), 4.4–4.0 (m, 1H), 2.7–2.38 (m, 4H), 2.0 (br s, 1H).

### 6.1.1.6. 3,4,4a $\alpha$ ,7,8,8a $\alpha$ -Hexahydronaphthalen-2(1H)-one (Cope Rearrangement of a Bicyclic Vinylcarbinol) (154)

Postassium hydride dispersion (17.8 g of 22% KH, 97.8 mmol) was washed to remove the oil. A solution of a 2:1 mixture of *endo*,

*exo*-2-vinyl-2-hydroxybicyclo[2.2.2]oct-5-enes (7.35 g, 48.9 mmol) in dry THF (200 mL) was added, and the resulting alkoxide solution was heated at reflux for 18 hours. The mixture was cooled and quenched with ethanol (20 mL) and water. Isolation under standard conditions via ether extraction gave 7.19 g of a

mixture of unreacted *exo*-2-vinyl-2-hydroxybicyclo[2.2.2]oct-5-ene and the product as a brown oil. Chromatographic separation on neutral alumina (180 g, activity III) with 30% ether–hexane gave 4.82 g (98% based on the starting *cis* alcohol) of pure 3,4,4a  $\alpha$  ,7,8,8a  $\alpha$  -hexahydronaphthalen-2(1*H*)-one as a colorless oil. <sup>1</sup>H NMR  $\delta$  5.70 (br s, 2H), 2.7–1.3 (br m, 12H); IR (film) 3020, 1700, 1640 cm<sup>-1</sup>. HRMS calcd for C<sub>10</sub>H<sub>14</sub>O, 150.104; found 150.106.

## 6.1.1.7. 6-Methylcyclodec-5-enone (Cope Rearrangement of a 1,2-Divinylcycloalkanol) 62b

Potassium hydride (24% dispersion in oil, 131 mg, 0.787 mmol) was placed in a flask fitted with a septum, the oil was removed as described above, and then THF (5 mL) was added. 1,2-Diethenyl-2-methylcyclohexanol (109 mg, 0.656 mmol) was added and the mixture stirred at room temperature until the evolution of hydrogen ceased. The flask was then blanketed with nitrogen, a condenser was added, and the mixture was refluxed for 15 minutes. The reaction mixture was cooled and worked up in a standard manner. Evaporation of the solvent and Kugelrohr distillation of the residue (bp 90° at 0.05 mm) gave 104 mg (95%) of 6-methylcyclodec-5-enone. VPC analysis (6 ft 10% DEGS on 80–100 mesh Chromosorb W) showed an *E:Z* double bond ratio of 1:8.6. <sup>1</sup>H NMR ( CDCl<sub>3</sub>)  $\delta$ 5.08–5.21 (m, 0.1H), 4.89–5.05 (m, 0.9H), 2.27–2.51 m, 2H), 1.45–2.21 (m, 15H); IR (film) 1704 cm<sup>-1</sup>. HRMS calcd for C<sub>11</sub>H<sub>18</sub>O 166.1357; found 166.1356.

# 6.1.1.8. 3-[3-Methoxy-1-methyl-(E)-2-propenyl]cyclohexanone (Cope Rearrangement of an Allylcyloalkanol) (22)

To a suspension of 2.0 g (50 mmol) of oil-free potassium hydride (from 8.9 g of a 22% dispersion) in 110 mL of diglyme under an argon atmosphere was added 3.0 g (17 mmol) of 1-[1-methoxy-(*E*)-2-butenyl]-2-cyclohexen-1-ol. The solution was heated at 100° for 37.5 hours. The resulting dark brown solution was added to 50 mL of saturated ammonium chloride solution and the aqueous phase was extracted twice with pentane. The combined organic extracts were washed, dried, and concentrated to give an orange oil. Bulb-to-bulb distillation (110° at 0.05 mm) gave 2.3 g (77%) of 3-[3-methoxy-1-methyl-(*E*,*Z*)-2-propenyl]cyclohexanone as a 60:40 mixture of *E* and *Z* isomers. <sup>1</sup>H NMR ( CDCl<sub>3</sub>)  $\delta$  6.2 (d, 0.6H, *trans*), 5.88 (d, 0.4H, *cis*), 4.53 (m, 0.6H, *trans*), 4.11 (m, 0.4H, *cis*), 3.51 (s, 1.2H), 3.47 (s, 1.8H), 2.65–1.12 (m, 10H), 0.99 (d, 3H), 0.94 (d, 3H); IR (film) 3020, 2940, 1705, 1650, 1450, 1375, 1100, 940, 760 cm<sup>-1</sup>.

#### 6.1.1.9. Retro Diels-Alder Reaction of

# 11-Hydroxy-9,10-dihydro-9,10-ethanoanthracene ([2 + 4] Cycloreversion Reaction) (140)

A mixture of 0.100 g (0.45 mmol) of

11-hydroxy-9,10-dihydro-9,10-ethanoanthracene and 0.020 g (0.50 mmol) of potassium hydride was stirred at room temperature in 7 mL of anhydrous THF

and 3 mL of HMPA for 66 hours. Water (~50 mL) was added and the mixture was extracted with petroleum ether. Concentration and filtration through silica gel gave 0.049 g (60%) of anthracene, identified by comparison with an authentic sample.

### 6.1.1.10. Fragmentation of 2-Methylbicyclo[2.2.2]oct-5-en-2-ol (Fragmentation Reaction) (138)

2-Methylbicyclo[2.2.2]oct-5-en-2-ol (10 mmol) in HMPA (5 mmol) was added dropwise to a stirred slurry of potassium hydride (24% in oil, 11 mmol) at 10° under nitrogen. After 20 minutes the mixture was heated at 120° for 2 hours. After cooling, the mixture was poured into an excess of cold saturated NH<sub>4</sub>Cl solution. Ether extraction and usual product isolation gave an oil that was distilled (100–110° at 0.01 mm) to give 1-(3¢-cyclohexenyl)-2-propanone (68%). <sup>1</sup>H NMR  $\delta$  5.65 (m, 2H), 2.39 (d, *J* = 7 Hz, 2H), 2.15 (s, 3H), 2.08 (m, 3H), 1.27 (m, 1H), 1.07 (m, 3H); IR 3030, 1710, 1360, 1160, 915, 730, 654 cm<sup>-1</sup>. MS (m/z) 138, 95, 81, 80, 79, 67, 59.

6.1.1.11. (2*Z*,6*E*)-3,7-Dimethyl-9-(1-methylethylidenyl)-2,6-cyclodecadien-1-o ne (Solvent-Induced [3,3]-Sigmatropic Rearrangement) (100) A solution of 3-methyl-1 α -(3-methyl-1,2-butadienyl)-6 β -(1-methylethenyl)-2-cyclohex-1 β -enol (544 mg) in 6 mL of 1-methyl-2-pyrrolidinone was heated at 120–130° for ~10 hours under argon. After cooling, the mixture was poured into water and extracted with ether. Usual isolation gave a mixture of starting material, product, and a bicyclic byproduct in a ratio of 3:2:2. Column chromatography on silica gel (hexane–ethyl acetate mixture) gave 139 mg (26%) of product. <sup>1</sup>H NMR ( CCl<sub>4</sub>) δ 5.77 (br s, 1H), 4.94 (t, *J* = 8 Hz, 9H), 1.77 (br s, 9H), 1.35 (s, 3H); IR (film) 1680, 1633, 1210, 1085, 992 cm<sup>-1</sup>. MS (m/z) 218, 200, 185. HRMS calcd for C<sub>15</sub>H<sub>22</sub>O 218.1666; found 218.1669.

6.1.1.12. Cyclotetradeca-3,5,7-trien-1-one ([5,5]-Sigmatropic Rearrangement) (102)

To a suspension of potassium hydride (404 mg, 2.2 mmol, 22% dispersion) at  $0^{\circ}$  was added dropwise a solution of

(*E,E*)-1,2-bis(1-buta-1,3-dienyl)cyclohexanol (174.6 mg, 0.855 mmol) in THF. The mixture was allowed to warm to room temperature for 1 hour. It was then recooled to 0°, saturated NH<sub>4</sub>Cl solution was added, and the aqueous phase was extracted with dichloromethane. The combined extracts were dried and concentrated, and the residue was chromatographed on silica gel, eluting with 97% ether–pentane, to give 157 mg (90%) of a faintly yellow solid (mp 50.5 – 51.5°). <sup>1</sup>H NMR ( CDCl<sub>3</sub>)  $\delta$  6.2–4.75 (m, 6H), 3.1–2.75 (br d, 2H), 2.7–2.3 (m, 2H), 2.3–1.8 (m, 6H), 1.75–1.25 (m, 4H); IR ( CCl<sub>4</sub>) 1705, 1650, 1440, 1430, 1100, 990, 975 cm<sup>-1</sup>. HRMS calcd for C<sub>14</sub>H<sub>20</sub>O 204.1541; found 204.1513.

#### 6.1.1.13. 11,11-Dimethylbicyclo[6.2.1]undec-1-en-6-one (Cope Rearrangement of a Bicyclic Vinylcarbinol) (155)

A suspension of iodine-purified potassium hydride was prepared as follows. A potassium hydride dispersion (25% in mineral oil, 14.8 mmol) was washed with petroleum ether (2 × 2 mL) and suspended in dry THF (5 mL). The magnetically stirred suspension was treated with a 10 mol% solution of iodine in THF until the brown-orange color persisted for 5 minutes. Then 3.92 g (14.8 mmol) of 18-crown-6 was added, followed by 567 mg (2.97 mmol) of 1,2-divinyl-7,7-dimethyl-exo-norbornan-2-ol in THF (2 mL). The mixture was stirred at room temperature for 15 minutes, cooled to -78°, and quenched with absolute ethanol (1 mL)/saturated ammonium chloride solution (15 mL). The product was extracted into ether and the ether layers were washed with brine, dried, and concentrated. Purification by chromatography on silica gel gave 490 mg (86%) of 11,11-dimethylbicyclo[6.2.1]undec-1-en-6-one as a colorless oil. <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 4.91–4.87 (m, 1H), 2.62–2.54 (m, 2H), 2.35–1.93 (series of m, 8H), 1.89–1.74 (m, 2H), 1.69–1.60 (m, 1H), 1.11 (s, 3H), 1.05 (s, 3H). MS calcd: 192.1514, found 192.1507. Anal. calcd for C<sub>13</sub>H<sub>20</sub>O: C, 81.20; H, 10.48. Found: C, 81.17; H, 10.51.

#### 6.1.1.14. endo-7-Hydroxymethyl-3,7-dimethyl-cis-bicyclo[4.3.0]non-8-en-4-on e (Cope Rearrangement of a Bicyclic Vinylcarbinol) (156) A solution of

*endo*-2-isopropenyl-7-*anti*-methyl-7-hydroxymethylbicyclo[2.2.1]-hept-5-en-2-o I (3.8 g, 19.6 mmol) in THF (10 mL) was added to a rapidly stirred suspension of potassium hydride (1.9 g, 47.5 mmol) in THF (30 mL). The mixture was stirred at room temperature for 2 hours and then quenched with methanol (1 mL) and concentrated. The residue was diluted with water and extracted with ethyl acetate ( $3 \times 20$  mL). The combined extracts were washed with brine, dried, and concentrated under reduced pressure. Purification of the crude product on silica gel gave 3.58 g (94%) of pure

*endo*-7-hydroxymethyl-3,7-dimethyl-*cis*-bicyclo[4.3.0]non-8-en-4-one as a colorless oil. <sup>1</sup>H NMR ( CDCl<sub>3</sub>)  $\delta$  5.75 (m, 1H), 5.48 (m, 1H), 3.45 (s, 2H), 3.04 (m, 1H), 2.67 (m, 1H), 2.38–2.03 (m, 5H), 1.5 (m, 1H), 1.08, (s, 4.5H), 1.05 (s, 1.5H); IR (neat) 3600–3300, 1710 cm<sup>-1</sup>. MS calcd 194.1307, found 194.1280.

# 6.1.1.15. 4-(2-Propyl)-5(E)-cyclodecenone (Cope Rearrangement of a Divinylcycloalkanol) (42)

A potassium hydride/mineral oil dispersion (2.61 mmol) was washed with pentane ( $3 \times 1 \text{ mL}$ ) and suspended in THF (2 mL). 18-Crown-6 (690 mg, 2.61 mmol) and 1-ethenyl-2-[3-methyl-(1-butenyl)]cyclohexan-1-ol (102 mg, 0.522 mmol) dissolved in THF (1.5 mL) were added and the mixture was refluxed for 2 hours. The mixture was then cooled to  $-78^{\circ}$  and quenched with absolute ethanol. The resulting slurry was partitioned between petroleum ether (5 mL)/saturated ammonium chloride solution (5 mL) and the organic layer was washed with brine, dried, and concentrated. Chromatography on silica gel

gave 85.5 mg of 4-(2-propyl)-5(*E*)-cyclodecenone as a waxy solid (mp ~28°). <sup>1</sup>H NMR ( CDCl<sub>3</sub>)  $\delta$  5.30 (ddd, *J* = 14.7, 11.0, 3.7 Hz, 1H), 4.94 (dd, *J* = 14.7, 10.6 Hz, 1H), 2.50 (dd, *J* = 16.1, 9.9 Hz, 1H), 2.43–2.12 (m, 4H), 2.04 (q, *J* = 12.6 Hz, 1H), 1.93 (m, 2H), 1.63 (m, 2H), 1.48 (sextet, *J* = 6.7 Hz, 1H), 1.32 (q, *J* = 13.4 Hz, 1H), 0.86 (d, *J* = 6.7 Hz, 3H). MS (Cl), m/z 195 (M + 1). Anal. calcd for C<sub>13</sub>H<sub>22</sub>O: C, 80.35; H, 11.41. Found: C, 80.20; H, 11.44.

6.1.1.16. 4-(tert-Butyldimethylsilyloxymethyl)-1,1-dimethoxy-3a α ,4 α ,5,7a α -tetrahydro-7H-inden-6-one (Cope Rearrangement of a Bicyclic Vinylcarbinol) (59)

Sodium hydride was washed with anhydrous hexane and suspended in THF (100 mL). A solution of *endo*-2-(*tert*-butyldimethylsilyloxy)prop-1-enyl-*exo*-2-hydroxy-7,7-dimethoxybic yclo[2.2.1]hept-5-ene (2.5 g, 7.4 mmol) in THF (50 mL) was added dropwise to the suspension at 0°. The mixture was heated at reflux for 90 minutes, then cooled to 0°, quenched with water, and extracted with ether. The organic phases were washed with water until neutral, dried, and concentrated. Recrystallization gave 2.0 g (80%) of a white solid, mp 72–73°. <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  6.04 (br s, 2H), 3.53 (d, *J* = 6.92 Hz, 2H), 3.35 (m, 1H), 3.23 (s, 3H), 3.20 (s, 3H), 2.83 (m, 1H), 2.65–1.65 (m, 5H), 0.89 (s, 9H), 0.05 (s, 6H); IR (neat) 2950–2650, 1705, 1600, 1440, 1390, 1320, 1320, 1230, 1170, 1130, 1020, 960, 900, 820, 750 cm<sup>-1</sup>. MS calcd: 340.2070; found 340.2071.

### 7. Tabular Survey

The tables include examples of anion-assisted sigmatropic rearrangements that have appeared in the literature up to the end of 1989. The tables are arranged in the same order as the text discussion. Entries in each table are in the order of increasing number of carbon atoms, although some exceptions occur when a single structure covers a series with different R groups. The symbol (–) indicates that no yield was reported.

Abbreviations used in the tables are as follows:

| 18-crown-6       | 1,4,7,10,13,16-hexaoxacyclooctadecane                      |
|------------------|------------------------------------------------------------|
| [2.2.2]-cryptand | 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane |
| diglyme          | diethylene glycol dimethyl ether                           |
| DME              | 1,2-dimethoxyethane                                        |
| DMSO             | dimethyl sulfoxide                                         |
| ether            | diethyl ether                                              |
| HMPA             | hexamethylphosphoric triamide                              |
| MCPBA            | <i>m</i> -chloroperbenzoic acid                            |
| NMP              | <i>N</i> -methylpyrrolidinone                              |
| TBDMS            | tert-butyldimethylsilyl                                    |
| TMEDA            | N,N,N',N'-tetramethylethylenediamine                       |
| THF              | tetrahydrofuran                                            |
| THP              | tetrahydropyranyl                                          |
| TMS              | trimethylsilyl                                             |
| triglyme         | triethylene glycol dimethyl ether                          |
|                  |                                                            |

#### Table I. Cope Rearrangements of 1,2-Divinylcycloalkanols

View PDF

Table II. Cope Rearrangements of Bicyclic Vinylcarbinols

View PDF

Table III. Cope Rearrangements of Allylcycloalkanols

View PDF

Table IV. Cope Rearrangements of 1,2-Divinylcyclobutanols

View PDF

Table V. Cope Rearrangements in Open-Chain Systems

View PDF

Table VI. Cope Rearrangements of 3-Methylene-1-vinylcycloalkanols

View PDF

Table VII. Cope Rearrangements that Contract Medium-Sized Rings

View PDF

Table VIII. Substrates that Undergo both [1,3] and [3,3] Rearrangements

View PDF

Table IX. Cope Rearrangements that Involve Aromatic Bonds

View PDF

Table X. [5,5]-Sigmatropic Rearrangements

View PDF

Table XI. [1,3]-Sigmatropic Rearrangements of Allylcarbinols

View PDF

Table XII. [1,3]-Sigmatropic Rearrangements of 3-Alkoxyalkyl-1,4-dienes

View PDF

 Table XIII. [1,3]-Sigmatropic Rearrangements of 2-Vinylcyclopropanols

View PDF

Table XIV. [1,3]-Sigmatropic Rearrangements of 2-Vinylcyclobutanols

View PDF

Table XV. [1,3]-Sigmatropic Rearrangements of 1-Substituted-2-Alkenols

View PDF

Table XVI. [1,3]-Sigmatropic Rearrangements in Macrocyclic Systems

View PDF

 Table XVII. [1,3]-Sigmatropic Rearrangements of Bridged Bicyclic

 Carbinols

View PDF

Table XVIII. [1,3]-Sigmatropic Rearrangements of1,1-Dialkoxy-Substituted Systems

View PDF

Table XIX. [1,5]-Sigmatropic Shifts

View PDF

Table XX. [2 + 2] Cycloreversion Reactions

View PDF

Table XXI. [2 + 4] Cycloreversions

View PDF

Table XXII. Electrocyclic [4 p  $\,$  + 2  $\sigma$  ] Ring Opening Reactions

View PDF

Table XXIII. Electrocyclic [2 p + 2  $\sigma$  ] Ring Opening Reactions

View PDF

Table XXIV. Solvent-Induced [3,3]-Sigmatropic Rearrangements

View PDF

Table XXV. Fragmentation Reactions

View PDF

Table XXVI. cis/trans Isomerizations

View PDF

Table XXVII. Miscellaneous Reactions

View PDF

Table I. Cope Rearrangements of 1,2-Divinylcycloalkanols

| Carbon          | No.                             | :              | Starting Mate                 | rial                                             | Reaction                         | Conditio        | ons    | Product(s) and Yield(s) (%)                          |                   | Refs. |
|-----------------|---------------------------------|----------------|-------------------------------|--------------------------------------------------|----------------------------------|-----------------|--------|------------------------------------------------------|-------------------|-------|
|                 | G                               | C              | OR <sup>1</sup>               | R <sup>2</sup>                                   |                                  |                 |        | $\bigcap_{R^2}^{O}$                                  |                   |       |
|                 | R                               | 1              | R <sup>2</sup>                | R <sup>3</sup>                                   |                                  |                 |        | ĸ                                                    |                   |       |
| CII             | H                               | 1              | CH <sub>3</sub>               | Н                                                | KH, THF, 1                       | 8-crown         | -6     | (—)                                                  |                   | 48    |
|                 | н                               | 1              | н                             | CH <sub>3</sub>                                  | KH, THF, re                      | flux            |        | (99)                                                 |                   | 326   |
| Cia             | н                               | 1              | i-CaHs                        | н                                                | KH, THF                          |                 |        | (85)                                                 |                   | 42    |
|                 | н                               | i i            | COCH <sub>3</sub>             | CH <sub>3</sub>                                  | KH, DME,                         |                 |        | (50) <sup>a</sup>                                    |                   | 45    |
| Cia             | т                               | MS             | CH <sub>3</sub>               | Н                                                | KH, THF                          |                 |        | (82) <sup>b</sup>                                    |                   | 48    |
| Cis             | н                               | 1              | CO2C3H5-C                     | CH <sub>3</sub>                                  | KH, DME,                         |                 |        | (50) <sup>a</sup>                                    |                   | 45    |
| Cis             | н                               | I              | n-C6H13                       | н                                                | KH, THF,18                       | -crown-         | -6     | (—)                                                  |                   | 48    |
|                 |                                 | R <sup>5</sup> | R <sup>3</sup> R <sup>2</sup> | R <sup>1</sup>                                   |                                  |                 |        | $R^3$<br>$R^4$<br>$R^3$<br>$R^2$<br>$R^1$            |                   |       |
|                 | R <sup>1</sup>                  | R <sup>2</sup> | R <sup>3</sup>                |                                                  | R <sup>4</sup>                   | R <sup>3</sup>  | R      |                                                      | (75)              | 24    |
| C12             | н                               | CH3            | н                             |                                                  | Н                                | CH3             | н      | KH, 1HF, 18-crown-6, 25, 18 n                        | (75)              | 34    |
| C <sub>13</sub> | i-C <sub>3</sub> H <sub>7</sub> | н              | н                             |                                                  | н                                | н               | н      | KH (10% 1 <sub>2</sub> -treated), THF,<br>18-crown-6 | (70-80)           | 42    |
| C14             | н                               | CH             | н                             |                                                  | CH <sub>2</sub> OCH <sub>3</sub> | CH <sub>3</sub> | н      | KH, THF, reflux, 18-crown-6                          | (67)              | 51, 3 |
| C               | н                               | CH             | н                             |                                                  | н                                | CH <sub>3</sub> | i-C3H7 | KH, THF, 18-crown-6                                  | (73)              | 34    |
| L15             |                                 |                |                               |                                                  |                                  |                 |        |                                                      |                   |       |
| C15<br>C19      | i-C3H7                          | CH             | CH2OCH                        | (CH <sub>3</sub> )OC <sub>2</sub> H <sub>5</sub> | н                                | H               | H      | KH, 18-crown-6, 70°, 1 h                             | (57) <sup>d</sup> | 36    |

Table I. Cope Rearrangements of 1,2-Divinylcycloalkanols (Continued)

| Carbon No.      | Starting Material                                          | Reaction Conditions                                                         | Product(s) and Yield(s) (%)          | Refs      |
|-----------------|------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------|-----------|
|                 | OH<br>R H                                                  |                                                                             | R                                    |           |
| C11<br>C14      | R = H<br>R = <i>i</i> -C <sub>3</sub> H <sub>7</sub><br>OH | KH, THF, 18-crown-6, 25°, 2 h<br>KH, THF, 18-crown-6 (5 eq),<br>60°, 25 min | (71)<br>(75)<br>H                    | 32c<br>50 |
| C <sub>12</sub> | H<br>OCH3                                                  | KH, 18-crown-6,<br>THF, reflux                                              | $R = H (60)^{r}$ $R = CH_3 (40)^{r}$ | 157       |
|                 | ОН                                                         | KH, THF, reflux, 4 h                                                        | (83)                                 | 35        |
| C <sub>13</sub> | OH<br>C <sup>2</sup> CH<br>R                               | NaH, DME                                                                    | R                                    | 47        |
|                 | $R = COCH_3$ $R = CO_2CH_3$                                |                                                                             | (40)<br>(45)                         |           |

| Table I. Cope | Rearrangements of | 1.2-Divinyle | cycloalkanols ( | (Continued) | į |
|---------------|-------------------|--------------|-----------------|-------------|---|
|---------------|-------------------|--------------|-----------------|-------------|---|



| Table I. Cope | Rearrangements of | 1,2-Divinylcycloalkanols | (Continued) |
|---------------|-------------------|--------------------------|-------------|
|---------------|-------------------|--------------------------|-------------|



Table I. Cope Rearrangements of 1,2-Divinylcycloalkanols (Continued)







Table I. Cope Rearrangements of 1,2-Divinylcycloalkanols (Continued)



<sup>b</sup> The reaction proceeded via in situ cleavage of the TMS ether to a potassium salt.

<sup>c</sup> No product was obtained when untreated KH was used.



Table I. Cope Rearrangements of 1,2-Divinylcycloalkanols (Continued)



Table II. Cope Rearrangements of Bicyclic Vinylcarbinols

| Carbon No.                 | Starting Ma           | aterial               | Reaction Conditions                                    | Product(s) and Yield(s) (%) | Refs.       |
|----------------------------|-----------------------|-----------------------|--------------------------------------------------------|-----------------------------|-------------|
| Z                          | Бон                   |                       |                                                        | R H O                       |             |
| C <sub>10</sub> R =<br>R = | H                     |                       | KH, THF, 65°, several min<br>KH, 18-crown-6, DME, 16 h | (98)<br>(—)                 | 5, 11<br>61 |
| R =<br>C <sub>11</sub> R = | H<br>OCH <sub>3</sub> |                       | NaH, THF, 65°, several h<br>KH, THF, 25°, 20 h         | (—)<br>(—)                  | 5, 11<br>5  |
|                            | R <sup>1</sup>        | Сон<br>R <sup>3</sup> |                                                        | $R^1$<br>$R^2$<br>$R^3$     | 52          |
| R                          | R <sup>2</sup>        | R <sup>3</sup>        |                                                        |                             |             |
| н                          | н                     | н                     |                                                        | (70-85)                     |             |
| C <sub>12</sub> H          | н                     | CH <sub>3</sub>       |                                                        | (—)                         |             |
| CI                         | H <sub>3</sub> H      | н                     |                                                        | ()                          |             |



Table II. Cope Rearrangements of Bicyclic Vinylcarbinols (Continued)





Table II. Cope Rearrangements of Bicyclic Vinylcarbinols (Continued)

| Carbon No.                             | Starting Material        | Reaction Conditions                            | Product(s) and Yield(s) (%) | Refs. |
|----------------------------------------|--------------------------|------------------------------------------------|-----------------------------|-------|
| en L                                   |                          | KN(TMS)2, THF,<br>heat 24 h                    | (90)                        | 63    |
|                                        | OMgBr                    | THF, reflux<br>several h                       | o R                         | 64    |
| C <sub>13</sub> R<br>C <sub>14</sub> R | = H<br>= CH <sub>3</sub> |                                                | (95)<br>(95)                |       |
| c₁₃ ∠                                  | A OH                     | KN(TMS) <sub>2</sub> ,<br>THF, 25°             | (86)                        | 155   |
| H0<br>C <sub>14</sub>                  | OCH3                     | KN(TMS) <sub>2</sub> , THF,<br>18-crown-6, 20° | CH30 (66)                   | 163   |

Table II. Cope Rearrangments of Bicyclic Vinylcarbinols (Continued)



Table II. Cope Rearrangements of Bicyclic Vinylcarbinols (Continued)

| Carbon No. | Starting Material          | _                   | Reaction                      | Conditions        | Product(s)                                  | and Yield(s) (%) | Refs.    |
|------------|----------------------------|---------------------|-------------------------------|-------------------|---------------------------------------------|------------------|----------|
| R4         | $R^{3}$<br>$R^{1}$ $R^{2}$ | K<br>P <sup>2</sup> | N(C3H7- <i>i</i> )2 (<br>THF  | or KH,            | R <sup>4</sup><br>H<br>H<br>R <sup>1'</sup> | $H_{R^2}$        |          |
|            | <u>~</u>                   | N                   |                               |                   |                                             |                  | 649      |
| C15        | н                          | -CF                 | H2-                           | CH <sub>3</sub> O | CH <sub>3</sub> O                           | (40)             | 164      |
| C16        | н                          | -(C                 | H2)2-                         | CH <sub>3</sub> O | CH <sub>3</sub> O                           | (68)             | 164      |
| C16        | $R^1, R^3 = -$             | (CH2)2-; 1          | $R^2 = H$                     | CH <sub>3</sub> O | CH <sub>3</sub> O                           | (76)             | 164, 165 |
| C17        | н                          | -(C                 | H2)3-                         | CH <sub>3</sub> O | CH <sub>3</sub> O                           | (85)             | 164      |
| C22        | н                          | -(                  | CH2)3-                        | CH <sub>3</sub> S | CH <sub>2</sub> OTBDMS                      | (84)             | 164      |
| C22        | $R^1, R^3 = -$             | (CH2)2-; F          | $R^2 = H$                     | CH <sub>3</sub> S | CH <sub>2</sub> OTBDMS                      | (76)             | 164      |
| C23        | н                          | CH <sub>3</sub>     | C <sub>2</sub> H <sub>5</sub> | CH <sub>3</sub> S | CH <sub>2</sub> OTBDMS                      | (68-76)          | 164      |

Table II. Cope Rearrangments of Bicyclic Vinylcarbinols (Continued)



| -  |    |    |
|----|----|----|
| 95 | <5 | () |
| 40 | 40 | 0  |
| 32 | 11 | 17 |
| 83 | () | () |
| 62 | 10 | () |
| 88 | () | () |
| 0  | () | 51 |
|    |    |    |

|     | R               | R <sup>2</sup>  | R <sup>3</sup>   | R <sup>4</sup> |
|-----|-----------------|-----------------|------------------|----------------|
| CIS | н               | CH <sub>3</sub> | н                | н              |
| C15 | OCH             | H               | н                | н              |
| CIS | н               | Н               | OCH <sub>3</sub> | н              |
| C16 | CH <sub>3</sub> | CH <sub>3</sub> | н                | н              |
| C16 | н               | CH <sub>3</sub> | CH <sub>3</sub>  | н              |
| C16 | OCH             | CH <sub>3</sub> | н                | н              |
| C16 | н               | CH <sub>3</sub> | OCH3             | н              |

Table II. Cope Rearrangements of Bicyclic Vinylcarbinols (Continued)



Table II. Cope Rearrangements of Bicyclic Vinylcarbinols (Continued)



172

| Carbon No.            | Starting Material                   | Reaction Conditions                                                                              | Product(s) and Yield(s) (%)                                         | Refs |
|-----------------------|-------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------|
| CI<br>C <sub>17</sub> | H3O OCH3<br>OH                      | KN(TMS) <sub>2</sub> ,<br>THF, 20°                                                               | CH3O OCH3 (-)                                                       | 133  |
|                       | OCH3                                | <ol> <li>KH, 18-crown-6,<br/>THF, 70°, 20 min</li> <li>C<sub>6</sub>H<sub>5</sub>SeCl</li> </ol> | CH <sub>3</sub> O<br>H<br>H<br>SeC <sub>4</sub> H <sub>5</sub> (79) | 58   |
| Ĺ                     | С                                   |                                                                                                  | H H K K K K K K K K K K K K K K K K K K                             |      |
| C17 H                 | <u>c</u>                            | KH, THF, 25°                                                                                     | $(\rightarrow)$                                                     | 155  |
| C19 -                 | S(CH <sub>2</sub> ) <sub>2</sub> S- | KN(TMS), 18-crown-6,<br>THF, 25°                                                                 | (43) <sup>b</sup>                                                   | 167  |
| Cia                   | S(CH.).S.                           | KH THE 250                                                                                       | (79)                                                                | 155  |

Table II. Cope Rearrangements of Bicyclic Vinylcarbinols (Continued)



<sup>a</sup> When the rearranged enolate was reacted with O<sub>2</sub> followed by triethyl phosphite



<sup>b</sup> When the rearranged enolate was reacted with O<sub>2</sub> followed by triethyl phosphite



Table III. Cope Rearrangements of Allylcycloalkanols



and the first of the second second



Table III. Cope Rearrangements of Allylcycloalkanols (Continued)



<sup>a</sup> The starting material was prepared by treatment of the corresponding trimethylsilyl ether with sodium fluoride.



| Carbon No.      | Starting Material  | Reaction Conditions | Product(s) and Yield(s) (%) | Refs. |
|-----------------|--------------------|---------------------|-----------------------------|-------|
|                 | R                  | KH, THF, 25°        | R                           | 170   |
| C9<br>C10       | $R = H$ $R = CH_3$ |                     | (78)<br>(100)               |       |
| C <sub>10</sub> | OH<br>H            | КН, ТНГ             | (56)                        | 171   |
| c <sub>11</sub> | но                 |                     | =o                          |       |
|                 |                    | KH, THF, 55°        | (35)                        | 69    |
|                 |                    | KH, THF             | ( )                         | 35    |
|                 |                    | KH, THF, rt         | (80)                        | 24    |

Table IV. Cope Rearrangements of 1,2-Divinylcyclobutanols



Table IV. Cope Rearrangments of 1,2-Divinylcyclobutanols (Continued)

180

Table IV. Cope Rearrangements of 1,2-Divinylcyclobutanols (Continued)



Table IV. Cope Rearrangements of 1,2-Divinylcyclobutanols (Continued)



Table IV. Cope Rearrangements of 1,2-Divinylcyclobutanols (Continued)



" The lithium salt was made in situ by addition of alkyllithium to the corresponding ketone.

| Carbon No.     | Sta         | arting N              | laterial                             | Reaction Conditions           | Produc            | tt(s) and Yield(s) (%)     | Refs. |
|----------------|-------------|-----------------------|--------------------------------------|-------------------------------|-------------------|----------------------------|-------|
|                |             | _R<br><sup>∿</sup> OH |                                      |                               | Ссно              | I + R                      | u     |
|                | threo : er  | ythro                 | R                                    |                               | I : II            |                            |       |
| C7             | -           |                       | CH <sub>3</sub>                      | KH, DME, 85°                  | -                 | ()                         | 71    |
| C7             | 79:2        | 1                     | CH <sub>3</sub>                      | KH, DME, 85°, 6 h             | 71:29             | (56)                       | 73    |
| C7             | 79:2        | 1                     | CH <sub>3</sub>                      | NMP, 204°, 10 h               | 67:33             | (79)                       | 73    |
| C7             | 12:8        | 8                     | CH <sub>3</sub>                      | KH, DME, 85°, 4 h             | 72:28             | (48)                       | 73    |
| C7             | 12:8        | 8                     | CH <sub>3</sub>                      | NMP, 204°, 11 h               | 79:21             | (77)                       | 73    |
| C8             | <del></del> |                       | C2H5                                 | KH, DME, 85°                  |                   | ()                         | 71    |
|                | HO          | +                     | $\mathbb{R}^{3}$<br>$\mathbb{R}^{2}$ |                               | 0                 | $\mathbb{R}^{R^3}_{R^2}$   | 75b   |
|                | CH307       | ~                     | ~R <sup>1</sup>                      |                               | CH <sub>3</sub> O | ≥∕_ <sub>R'</sub>          |       |
|                | RI          | R <sup>2</sup>        | R <sup>3</sup>                       |                               |                   |                            |       |
| C <sub>8</sub> | н           | H                     | н                                    | KH, THF, 66°, 9.5 h           | (85)              |                            |       |
| C <sub>9</sub> | н           | H                     | CH <sub>3</sub>                      | KH, DME, 85°, 6 h             | (79)              |                            |       |
| C <sub>9</sub> | н           | H                     | CH <sub>3</sub>                      | KH, DME, 85°, 10.5 h          | (81)              |                            |       |
| C10            | н           | CH <sub>3</sub>       | CH <sub>3</sub>                      | KH, DME, 85°, 24 h            | (11)              |                            |       |
| C10            | CH3         | н                     | CH3                                  | KH, DME, 85°, 10.5 h          | (81)              |                            |       |
|                | HO          | 1                     | CH.                                  |                               | 0<br>L            |                            |       |
| C <sub>8</sub> |             | J                     | 0.13                                 | KH, THF, HMPA,<br>20°, 30 min | Car               | (63)<br>- SCH <sub>3</sub> | 21a   |

Table V. Cope Rearrangements in Open-Chain Systems (Continued)

| Carbon No.     | Carbon No. Starting Material |                 | Re              | action Condi             | tions           | Product(s) an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d Yield(s) (%)                                                                                                                | Refs. |
|----------------|------------------------------|-----------------|-----------------|--------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------|
| C <sub>8</sub> | ОН                           |                 | КН, 1<br>ТН     | 8-crown-6 (<br>F, reflux | 1.5 eq),        | Contraction of the second seco | (78)                                                                                                                          | 174   |
| R              | $R^5$ OH R<br>$R^2$ R        | 3               | KH, I           | HMPA, 25°                |                 | $R^4$ $R^1$<br>$R^5$ $R^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $O$ $R^3$                                                                                                                     | 76    |
|                | "                            |                 |                 |                          |                 | + R4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{array}{c}             R^1 & 0 & R \\             \hline             R^5 & R^2 \\             R^7 & \Pi \end{array} $ | 3     |
|                | R                            | R <sup>2</sup>  | R <sup>3</sup>  | R <sup>4</sup>           | R <sup>5</sup>  | I:11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                               |       |
| Co             | н                            | н               | н               | н                        | н               | 5:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (81)                                                                                                                          |       |
| C10            | CH3                          | н               | н               | н                        | Н               | 5:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (83)                                                                                                                          |       |
| C10            | н                            | CH <sub>3</sub> | н               | н                        | н               | 3:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (78)                                                                                                                          |       |
| C11            | CH <sub>3</sub>              | CH <sub>3</sub> | н               | н                        | н               | 3:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (77)                                                                                                                          |       |
| C11            | н                            | н               | CH <sub>3</sub> | CH <sub>3</sub>          | н               | 4:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (84)                                                                                                                          |       |
| CII            | CH3                          | н               | н               | н                        | CH <sub>3</sub> | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (43) <sup>a</sup>                                                                                                             |       |
| C12            | н                            | CH <sub>3</sub> | CH <sub>3</sub> | CH3                      | H               | 3:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (81)                                                                                                                          |       |
| C12            | CH <sub>3</sub>              | н               | CH <sub>3</sub> | CH3                      | н               | 6:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (86)                                                                                                                          |       |
| C13            | CH <sub>3</sub>              | н               | CH <sub>3</sub> | CH <sub>3</sub>          | CH3             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (46) <sup>b</sup>                                                                                                             |       |
| Cia            | CH                           | CH              | CH              | CH                       | н               | 5:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (82)                                                                                                                          |       |

| Carbon No.      | Starting Material | Reaction Conditions                      | Product(s) and Yield(s) (%) | Refs. |
|-----------------|-------------------|------------------------------------------|-----------------------------|-------|
| C,<br>B         | rzno              | 2                                        | OHC ()                      | 106   |
| н               | ° (               | KH, 18-crown-6, THF,<br>reflux several h | OHC (47)                    | 121   |
| c <sub>10</sub> | С                 | KH, DME, reflux, 2.5 h                   | (78)                        | 175   |
| Ć               | OH<br>OH          | KH, 18-crown-6,<br>DME, reflux           | OHC (85)                    | 176   |
| H               |                   | n-C4H9Li, THF                            | CHO (-)                     | 105   |

Table V. Cope Rearrangements in Open-Chain Systems (Continued)



| Carbon No.             | Starting Material        | Reaction Conditions                 | Product(s) and Yield(s) (%) | Refs. |
|------------------------|--------------------------|-------------------------------------|-----------------------------|-------|
| c <sub>13</sub>        | OH OH                    | KH, DME                             | онс (73)                    | 78    |
| Ç                      | OH OH                    | KH, 18-crown-6,<br>DME, reflux, 3 h | сно (-)                     | 177   |
| с <sub>14</sub><br>С   | NaO<br>6H <sub>5</sub> S | Ether, 25°, 6 h                     | C6H5S (71)                  | 106   |
| r-(<br>C <sub>15</sub> | C4H9                     | t<br>КН, ТНF, 17 h                  | -C4H9 (32)                  | 82    |
|                        |                          |                                     | t-C₄H9 ↓ (39)               |       |

Table V. Cope Rearrangements in Open-Chain Systems (Continued)



Table V. Cope Rearrangements in Open-Chain Systems (Continued)

| Carbon No.                                | Starting Material                   | Reaction Conditions                                                              | Product(s) and Yield(s) (%)                                    | Refs. |
|-------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------|-------|
| НО<br>С <sub>19</sub><br>С <sub>6</sub> 1 | H5 OH C6H5                          | Base (unspecified, 2 eq)                                                         | $HO_2C \xrightarrow{H} (87)$ $C_6H_5 \xrightarrow{H} O C_6H_5$ | 75a   |
| C <sub>6</sub> I                          | H <sub>5</sub><br>CO <sub>2</sub> H | LiN(C <sub>2</sub> H <sub>5</sub> ) <sub>2</sub> , THF, -70°<br>warm to 65°, 2 h | $C_6H_5$ $C_6H_5$ $(\rightarrow)$<br>$CO_2H$                   | 178   |
| C <sub>21</sub> R-                        | HO<br>HO                            | КН                                                                               | $R \longrightarrow O C_6H_5 (-)$                               | 179   |
| <sup>a</sup> Cleavage prod                | luct                                | was also formed in 35% yield as a                                                | mixture of double bond isomers.                                |       |
| <sup>b</sup> Cleavage prod                | luct                                | was also formed in 38% yield as a                                                | mixture of double bond isomers.                                |       |

| Carbon No.      | Starting Material | Reaction Conditions                       | Product(s) and Yield(s) (%)                      | Refs. |
|-----------------|-------------------|-------------------------------------------|--------------------------------------------------|-------|
| C <sub>13</sub> | OH                | КОН, СН <sub>3</sub> ОН, Н <sub>2</sub> О | (60)<br>0                                        | 86    |
|                 | OH                | КОН, CH <sub>3</sub> OH, H <sub>2</sub> O | $\downarrow$ $\rightarrow$ $\rightarrow$ $\circ$ | 87    |
| C <sub>14</sub> | остори            | KOH (4%), CH3OH<br>reflux 4 h             | HO O ()"                                         | 88    |
|                 | HO CECH           | н                                         | (65-70)<br>0                                     | 91    |

Table VI. Cope Rearrangements of 3-Methylene-1-vinylcycloalkanols

Table VI. Cope Rearrangements of 3-Methylene-1-vinylcycloalkanols (Continued)

| Carbon No. | Starting Material   | Reaction Conditions                       | Product(s) and Yield(s) (%) | Refs. |
|------------|---------------------|-------------------------------------------|-----------------------------|-------|
|            | O R                 | КОН, СН <sub>3</sub> ОН, Н <sub>2</sub> О |                             |       |
| C14        | $R = CH_3$          |                                           | (60)                        | 87    |
| C16        | $R = (CH_2)_2CO_2H$ |                                           | (60)                        | 90    |

Table VII. Cope Rearrangements that Contract Medium-Sized Rings

| Carbon No.     | Starting Material | Reaction Conditions   | Product(s) and Yield(s) (%) | Refs.  |
|----------------|-------------------|-----------------------|-----------------------------|--------|
|                | R<br>OH           |                       |                             |        |
| C <sub>9</sub> | R = H             | KH, ether or THF, 25° | ()                          | 30, 94 |
| C10            | $R = CH_3$        | NaH, THF, 66°, 3 h    | (90)                        | 93     |
| CII            | $R = C_2 H_s$     | NaH, THF, 66°, 3 h    | (90)                        | 93     |

| Carbon No.      | Starting M         | aterial         | <u></u>         | Reaction        | n Conditio | ons                                                           | Prod | luct(s) and Yield(s) (%)                          | Refs.    |
|-----------------|--------------------|-----------------|-----------------|-----------------|------------|---------------------------------------------------------------|------|---------------------------------------------------|----------|
| (               | $R^{3}$<br>$R^{2}$ | КН, НМРА        |                 |                 |            | $(CH_2)_n = 0$ $R^3 R^2 R^1$ $(CH_2)_n = 0$ $R^3 R^2 R^1 = 1$ |      |                                                   |          |
|                 | n                  | R'              | R <sup>2</sup>  | R <sup>3</sup>  | Temp.      | Time (h)                                                      | I    | $\begin{bmatrix} R^2 \\ R^3 \\ R^1 \end{bmatrix}$ |          |
| C <sub>11</sub> | 1 cis              | н               | н               | н               | 25°        | 2.8                                                           | (55) | (7)                                               | 122, 123 |
| C12             | 2 trans            | н               | н               | н               | 25°        | 3.0                                                           | (59) | (8)                                               | 122, 123 |
| C12             | 2 cis              | н               | Н               | н               | 25°        | 27.5                                                          | (31) | (0)                                               | 122, 123 |
| C15             | 5 trans            | н               | H               | н               | 60°        | 4.5                                                           | (57) | (9)                                               | 123      |
| C16             | 5                  | CH <sub>3</sub> | н               | н               | 54°        | 2.5                                                           | (51) | (11)                                              | 125      |
| C16             | 5                  | н               | н               | CH <sub>3</sub> | 100°       | 2.0                                                           | (33) | (8)                                               | 125      |
| C16             | 5                  | н               | CH <sub>3</sub> | н               | 102°       | 1.5                                                           | (18) | (1)                                               | 125      |
| C18             | 5                  | н               | i-C3H7          | н               | 100°       | 2.5                                                           | (19) | (4)                                               | 125      |
| C18             | 5                  | TMS             | H               | н               | 60°        | 4.0                                                           | (67) | (9) <sup>a</sup>                                  | 125      |
| C18             | 5                  | Н               | TMS             | Н               | 25°        | 11.0                                                          | ()   | (—) <sup>b</sup>                                  | 125      |

Table VIII. Substrates That Undergo Both [1,3] and [3,3] Rearrangements

Table VIII. Substrates That Undergo Both [1,3] and [3,3] Rearrangements (Continued)



2

Table IX. Cope Rearrangements That Involve Aromatic Bonds


Table X. [5,5]-Sigmatropic Rearrangements



Table X. [5,5]-Sigmatropic Rearrangements (Continued)



| Carbon No. | S                                  | arting Mat                      | erial                         | Re                            | action Conditio | ns                 | Product(s | s) and Yield(s)      | (%)  | Refs. |
|------------|------------------------------------|---------------------------------|-------------------------------|-------------------------------|-----------------|--------------------|-----------|----------------------|------|-------|
|            | R <sup>1</sup> -<br>R <sup>3</sup> |                                 |                               |                               | RIF             | 1 <sup>2</sup> + F |           | $R^{3} + R^{1}$      |      | 3     |
|            | м                                  | R <sup>1</sup>                  | R <sup>2</sup>                | R <sup>3</sup>                | Solvent         | Temp               | Time (h)  | 1 : N : M            |      |       |
| C,         | Li                                 | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> | CH <sub>3</sub>               | Diglyme         | 162°               | 168       | 0:71:11              | (7)  | 103   |
| CII        |                                    | i-C3H7                          | i-C3H7                        | CH <sub>3</sub>               | DME             | 85°                | 96        | 0:72:28              | (18) | 103   |
| C11        |                                    | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> | i-C3H7                        | Diglyme         | 162°               | 48        | 0:73:27              | (27) | 103   |
| C12        | MgBr                               | 1-C4H9                          | i-C3H7                        | CH <sub>3</sub>               | THF             | 25°                | 96        | 13:60:27             | (96) | 18    |
| C12        | Li                                 | t-C4H9                          | i-C3H7                        | CH <sub>3</sub>               | THF             | 25°                | 12        | 0:81:19              | (98) | 103   |
| C13        | MgBr                               | 1-C4H9                          | 1-C4H9                        | CH <sub>3</sub>               | THF             | 25°                | 6         | <1:66:33             | (91) | 103   |
| C13        | Li                                 | 1-C4H9                          | i-C4H9                        | CH <sub>3</sub>               | THF             | 2500               | 1.2       | <1:86:14             | (91) | 103   |
| C13        |                                    | C <sub>2</sub> H <sub>5</sub>   | C6H5                          | CH <sub>3</sub>               | Diglyme         | 162°               | 144       | 1:99:0               | (77) | 103   |
| C13        |                                    | i-C3H7                          | i-C3H7                        | i-C3H7                        | THF             | 65°                | 48        | 0:50:50              | (86) | 103   |
| C14        |                                    | i-C3H7                          | C6H5                          | CH <sub>3</sub>               | Diglyme         | 162°               | 72        | 75:9:6               | (67) | 103   |
| C14        | •                                  | i-C <sub>3</sub> H <sub>7</sub> | C6H11                         | CH <sub>3</sub>               | DME             | 85°                | 96        | 72:20:8              | (82) | 103   |
| C14        |                                    | C <sub>2</sub> H <sub>5</sub>   | C <sub>2</sub> H <sub>5</sub> | C6H5                          | THF             | 65°                | 6         | 0 : 100 <sup>b</sup> | (76) | 103   |
| C15        | MgBr                               | 1-C4H9                          | C6H11                         | CH <sub>3</sub>               | THF             | 25°                | 120       | 25:53:22             | (84) | 103   |
| C15        | Li                                 | 1-C4H9                          | C6H11                         | CH <sub>3</sub>               | THF             | 25°                | 12        | <1:81:19             | (81) | 103   |
| C15        |                                    | 1-C4H9                          | C <sub>6</sub> H <sub>5</sub> | CH <sub>3</sub>               | Diglyme         | 162°               | 48        | 6:76:18              | (92) | 103   |
| C16        | MgBr                               | i-C3H7                          | i-C3H7                        | C6H5                          | THF             | 25°                | 12        | <1 : 99°             | (95) | 103   |
| C16        | Li                                 | i-C3H7                          | i-C3H7                        | C <sub>6</sub> H <sub>5</sub> | THF             | 2500               | 0.7       | 0 : 100 <sup>b</sup> | (78) | 103   |
| C17        |                                    | C6H11                           | C6H11                         | CH <sub>3</sub>               | DME             | 85°                | 72        | 80 : 20 <sup>b</sup> | (79) | 103   |

Table XI. [1,3]-Sigmatropic Rearrangements of Allylcarbinols

Table XI. [1,3]-Sigmatropic Rearrangements of Allylcarbinols (Continued)



<sup>b</sup> The cis:trans ratio was 3:1.

' The product was formed via

TMS

OK

<sup>d</sup> The cis:trans ratio was 1:5.

Carbon No. **Reaction Conditions** Product(s) and Yield(s) (%) Refs. Starting Material R<sup>4</sup> R<sup>3 R<sup>4</sup></sup>  $\mathbf{R}^2 \mathbf{R}^3$ R<sup>1</sup>O R'O' R R<sup>2</sup> R<sup>3</sup>  $\mathbb{R}^4$ CH=CHCH3 ZnBr C9 H н THF (19)<sup>a</sup> 106 CH=C(CH<sub>3</sub>)<sub>2</sub> CII н CH<sub>3</sub> н n-C4H9Li, THF, reflux 2.5 h (98) 107 C12 THF, 60°, 45 h (7)<sup>a,b</sup> ZnBr n-C6H13 н н 106 (41)<sup>b</sup> THF, DME, 60°, 240 h 106 Diglyme, 100°, 15 h (100) 106 HMPA, 100° (100) 106 C13 н C6H5 н CH<sub>3</sub> KH, THF, 0° (--) 105 н KH, THF, 0°, 5 min 105 н n-C6H13 CH<sub>3</sub> (--) n-C4H9Li, THF, 65°, 4 h 105 (--) NaH, HMPA, 0°, 30 min 105 (--) NaH, THF, 15-crown-5 (--) 105 OH ЭН 105 n-C4H9Li, THF, C16 (--) 0°, 30 min

Table XII. [1,3]-Sigmatropic Rearrangements of 3-Alkoxyalkyl-1,4-dienes

<sup>a</sup> The ZnBr salt was formed in situ.

<sup>b</sup> The remainder was starting material.

Table XIII. [1,3]-Sigmatropic Rearrangements of 2-Vinylcyclopropanols

| Carbon No.     | Starting Material                           | Reaction Conditions                      | Product(s) and Yield(s) (%) | Refs. |
|----------------|---------------------------------------------|------------------------------------------|-----------------------------|-------|
|                |                                             | Ether, $0^{\circ}$ to $25^{\circ}$ , 1 h | РОН                         | 109   |
| CA             | $R = CH_1$                                  |                                          | (69) <sup>a</sup>           |       |
| C <sub>9</sub> | $R = t - C_4 H_9$                           |                                          | (90)                        |       |
| CII            | $\mathbf{R} = \mathbf{C}_{6}\mathbf{H}_{5}$ |                                          | (95)                        |       |
| C <sub>7</sub> |                                             | Ether, 0° to 25°, 1 h                    | (74) <sup>и</sup><br>ОН     | 109   |
|                | OLi<br>Jan                                  | Ether, 0° to 25°, 1 h                    | (50-59) <sup>a</sup><br>OH  | 109   |
|                | ~OLi                                        | Ether, 0° to 25°, 1 h                    | OH (45) <sup>a</sup>        | 26    |
| C <sub>8</sub> | rOLi                                        | Ether, 0° to 25°, 1 h                    | OH (48)"                    | 109   |

| Carbon No.      | Starting M                                                         | laterial       |                                              | Reaction Conditions                  | Product(s) and Yield(s) (%)        | Refs. |
|-----------------|--------------------------------------------------------------------|----------------|----------------------------------------------|--------------------------------------|------------------------------------|-------|
|                 |                                                                    | ∽OL            | i                                            | Ether, 0° to 25°, 1 h                | (73) <sup>a</sup>                  | 109   |
| C,              |                                                                    | 0~~0           | Li                                           | Ether, 0° to 25°, 1 h                |                                    | 109   |
|                 | R <sup>3</sup><br>R <sup>1</sup><br>R                              | S(             | D <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | n-C4H9Li, THF, HMPA,<br>-78° to -30° | $R^1 \xrightarrow{R^3} SO_2C_6H_5$ | 83    |
|                 | R <sup>1</sup>                                                     | R <sup>2</sup> | R <sup>3</sup>                               |                                      |                                    |       |
| C12             | н                                                                  | н              | н                                            |                                      | (97)                               |       |
| C13             | н                                                                  | CH3            | н                                            |                                      | $(\rightarrow)$                    |       |
| C13             | CH <sub>3</sub>                                                    | н              | Н                                            |                                      | ( <del>-)</del>                    |       |
| C <sub>20</sub> | н<br>(CH <sub>2</sub> ) <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | СН3<br>Н       | СН <sub>3</sub><br>Н                         |                                      | ( <u>    )</u>                     |       |
| C <sub>13</sub> | H                                                                  | R<br>OLi       |                                              | THF, hexane, HMPA                    | <sup>R</sup><br>ОН + <sup>R</sup>  | OH 26 |
|                 | R = (CH <sub>2</sub> )                                             | 2C6H5          |                                              |                                      | 99:1 (77-82) <sup>a</sup>          |       |

Table XIII. [1,3]-Sigmatropic Rearrangements of 2-Vinylcyclopropanols (Continued)

Table XIII. [1,3]-Sigmatropic Rearrangements of 2-Vinylcyclopropanols (Continued)



"The lithium salt was formed in situ by n-C4H9Li cleavage of the β-chloroethyl ether of the corresponding alcohol.



## Table XIV. [1,3]-Sigmatropic Rearrangements of 2-Vinylcyclobutanols

Table XIV. [1,3]-Sigmatropic Rearrangements of 2-Vinylcyclobutanols (Continued)





Table XIV. [1,3]-Sigmatropic Rearrangements of 2-Vinylcyclobutanols (Continued)





<sup>a</sup> The cis:trans ratio was 16:84.

<sup>c</sup> The lithium salt was prepared in situ by the reaction of the analogous borate complex with excess CH<sub>3</sub>Li.

- <sup>e</sup> The borate complex was prepared by reduction of the corresponding ketone with KB(C<sub>4</sub>H<sub>9</sub>-s)<sub>3</sub>H.
- <sup>f</sup> The potassium salt was formed with potassium ethoxide.

<sup>&</sup>lt;sup>b</sup> The borate complex resulting from reduction of the corresponding ketone with KB(C<sub>4</sub>H<sub>9</sub>-s)<sub>3</sub>H resists rearrangement.

<sup>&</sup>lt;sup>d</sup> The lithium salt was prepared by addition of  $n-C_4H_9Li$  to the corresponding ketone.

| Carbon No.            | Starting Material                   | Reaction Conditions                                        | Product(s) and Yield(s) (%)                                                          | Refs       |
|-----------------------|-------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------|------------|
| Н<br>С <sub>10</sub>  | ots                                 | KH, HMPA, THF                                              | Š (53)                                                                               | 115        |
| H<br>C <sub>11</sub>  | o sí sí                             | KH, HMPA, 25°, 24 h<br>KH, TPPA <sup>a</sup> , 25°, 45 min | (23)<br>(30)                                                                         | 115<br>120 |
| H<br>C <sub>11</sub>  | ° C <sub>6</sub> H <sub>5</sub>     | KH, HMPA, 25°, 4 h                                         | O<br>(CH <sub>2</sub> ) <sub>3</sub> C <sub>6</sub> H <sub>5</sub> (21) <sup>b</sup> | 124        |
| c <sub>13</sub> \     | CH <sub>2</sub> C <sub>6</sub> I    | I <sub>5</sub> кн, нмра, 100°                              | CHO (14)<br>CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                            | 121        |
| H0<br>C <sub>13</sub> | 0 H D C <sub>6</sub> H <sub>5</sub> | КН, НМРА, 22°                                              | °<br>− − − − − − − − − − − − − − − − − − −                                           | 27         |

Table XV. [1,3]-Sigmatropic Rearrangements of 1-Substituted 2-Alkenols (Continued)



| Carbon No.              | Starting Material                                            | Reaction Conditions                             | Product(s) and Yield(s) (%)                                                                     | Refs. |
|-------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------|-------|
| $\subset$               |                                                              | KH (excess),<br>18-crown-6,<br>THF, reflux      | $\bigcup_{HO}^{H} \bigcup_{C_6H_5}^{(0)}$                                                       | 119   |
| C <sub>17</sub>         | HO S<br>S<br>C <sub>6</sub> H <sub>5</sub>                   | <i>п</i> -C <sub>4</sub> H9Li, THF,<br>24°, 1 h |                                                                                                 | 119   |
| CH<br>C <sub>19</sub> 2 | CH <sub>3</sub> O<br>CH <sub>2</sub> OR<br>CH <sub>3</sub> O | KH, 18-crown-6,<br>THF                          | CH <sub>3</sub> O OCH <sub>3</sub><br>H<br>H<br>CH <sub>3</sub> O OCH <sub>3</sub><br>(56)<br>O | 185   |

atronic Rearrangements of 1-Substituted 2-Alkenols (Continued) Table XV [1 3]-Sig





Product (s) and Yield(s) (%) Refs. Carbon No. Starting Material **Reaction Conditions** OCH3 OCH<sub>3</sub> OLi 0 OCH<sub>3</sub>O OLi юн 0 THF, -30 to 66° e 114 0 Ŕ R CH<sub>3</sub>O **ÓCH**<sub>3</sub> **ÒCH**<sub>3</sub> C28 (47)  $\mathbf{R} = \mathbf{H}$  $R = OCH_3$ (63) C29 N-P , a solvent that is more polar than HMPA. <sup>a</sup> TPPA is tripyrrolidinophosphoramide, /3 <sup>b</sup> In addition, toluene was isolated in 9% yield. <sup>c</sup> The TMS group was replaced by hydrogen during isolation. CN to cyclohexene-3-one. <sup>d</sup> The lithium salt was made by the addition of

Table XV. [1,3]-Sigmatropic Rearrangements of 1-Substituted 2-Alkenols (Continued)

" The lithium salt was prepared by addition of the appropriate vinyllithium to a cyclobutanone.

Carbon No. Reaction Conditions Product(s) and Yield(s) (%) Refs. Starting Material KH, HMPA, 25° 123 Ò OH Ŕ IN R C14 C16 C17 R = H (56)  $R = CH=CH_2$  $R = CH=CHCH_3$ (20) (33) OH CH<sub>3</sub>O. CH<sub>3</sub>O C15 КН, НМРА (38) 124 OH R R KH (8 eq), HMPA, 25° 186 R<sup>2</sup> R<sup>2</sup> R<sup>2</sup> RI Н н (70) C16 (94) н OCH3 C17 осн, н (54) C17

Table XVI. [1,3]-Sigmatropic Rearrangements in Macrocyclic Systems

Table XVI. [1,3]-Sigmatropic Rearrangments in Macrocyclic Systems (Continued)

| Carbon No. | Starting Material                  | Reaction Conditions | Product(s) and Yield(s) (%) | Refs. |
|------------|------------------------------------|---------------------|-----------------------------|-------|
|            | R <sup>2</sup><br>HO S<br>S        | _                   |                             | 115   |
| C19        | $\frac{R^1}{CH_3}$ $\frac{R^2}{H}$ |                     | (21)                        |       |
| C19        | H CH <sub>3</sub>                  |                     | (28)                        |       |

| Carbon No.         | Starting Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reaction Conditions                  | Product(s) and Yield(s) (%) | Refs. |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------|-------|
| н.<br>с,           | Сн                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NaOH (0.08 M),<br>CH3OH, rt, 5 min   | H(68)                       | 126   |
| C <sub>10</sub>    | ОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | KH, THF.<br>18 crown-6               | (36)                        | 28    |
| с,, Ко             | Real Provide American Science Provide American | Thermolysis                          | 0=                          | 128   |
| c,,                | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KH, THF,<br>24º, 2 min               | (100)                       | 127   |
| с <sub>12</sub> мо | Re la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Thermolysis<br>M = unspecified metal | 0)                          | 128   |

Table XVII. [1,3]-Sigmatropic Rearrangements of Bridged Bicyclic Carbinols

Refs. Carbon No. **Reaction Conditions** Product(s) and Yield(s) (%) Starting Material R<sup>2</sup> -R<sup>2</sup> HO KH, 18-crown-6, 28 R<sup>I</sup>R<sup>I</sup> THF R<sup>1</sup> H R<sup>2</sup> C<sub>12</sub> C<sub>13</sub> C<sub>13</sub> H (20) CH<sub>3</sub> H (42) н CH<sub>3</sub> (34) R R R HO R KH, 18-crown-6, THF 28 п I I (24) + II (7) C13  $\mathbf{R} = \mathbf{H}$  $R = CH_3$ C14 I (21) + II (5) KH, 18-crown-6, 129 0 THF, reflux CH<sub>3</sub>O CH<sub>3</sub>O CH<sub>3</sub>O OH IHR п ÓН C12  $R = CH_3$ I (21) I (83) + II (13) I (100) C13 R = CH=CH<sub>2</sub> C17  $R = C_6H_5$ 

Table XVII. [1,3]-Sigmatropic Rearrangements of Bridged Bicyclic Carbinols (Continued)

Table XVII. [1,3]-Sigmatropic Rearrangements of Bridged Bicyclic Carbinols (Continued) Product(s) and Yield(s) (%) Carbon No. **Reaction Conditions** Starting Material



Table XVIII. [1,3]-Sigmatropic Rearrangements of 1,1,-Dialkoxy-Substituted Systems

<sup>a</sup> There was no reaction with ether as the solvent.

Table XIX. [1,5]-Sigmatropic Shifts



Table XIX. [1,5]-Sigmatropic Shifts (Continued)



| Carbon No. | Starting Material | Reaction Conditions | Product(s) and Yield(s) (%) |
|------------|-------------------|---------------------|-----------------------------|
|            | HOR               |                     | 0                           |

132 KH, HMPA, 30 min C6H5 C6H5 C<sub>6</sub>H<sub>5</sub> C<sub>6</sub>H<sub>5</sub> C6H5 C6H5 R C<sub>30</sub> (76) CH3 C33 (--) CH<sub>3</sub>O C33 (--) OCH3 C6H5 C49 (--) C6H C<sub>6</sub>H<sub>4</sub>Cl-p C<sub>6</sub>H<sub>5</sub> (--) C49 p-CIC6H C6H5

Refs.

<sup>a</sup> Only starting material was recovered.

<sup>b</sup> The starting material was optically active but the product was racemic.

| Carbon No.     | Starting Material    | Reaction Conditions                                                                       | Product(s) and Yield(s) (%)    | Refs. |
|----------------|----------------------|-------------------------------------------------------------------------------------------|--------------------------------|-------|
| C5             |                      | Glyme, 160-200°                                                                           | $=$ $(\rightarrow)$            | 29    |
| C <sub>6</sub> |                      | Glyme, 160-200°                                                                           |                                | 29    |
|                |                      | , R <sup>2</sup><br>KOC4H9- <i>t</i> , HOC4H9- <i>t</i> ,<br>reflux 4 h<br>R <sup>3</sup> | $HN \xrightarrow{O}_{R_3} R^1$ | 137   |
| C7             | H H CH               | 13                                                                                        | (60)                           |       |
| C7             | FHC                  | I3                                                                                        | (50)                           |       |
| C <sub>8</sub> | H CH <sub>3</sub> CH | <b>I</b> 3                                                                                | (65)                           |       |
| C9             | Н Н і-С              | C <sub>3</sub> H <sub>7</sub>                                                             | (84)                           |       |
| C9             | CH3 CH3 CH           | ł <sub>3</sub>                                                                            | (83)                           |       |
| C11            | Н Н <i>п</i> -       | C <sub>5</sub> H <sub>11</sub>                                                            | (83)                           |       |
| C11            | F H n-               | C <sub>5</sub> H <sub>11</sub>                                                            | (70)                           |       |



T 11 WW 10 . 01 0

.

. . .



Table XXI. [2+4] Cycloreversions



Table XXI. [2+4] Cycloreversions (Continued)



Table XXI. [2+4] Cycloreversions (Continued)



Table XXI. [2 + 4] Cycloreversions (Continued)





Table XXI. [2+4] Cycloreversions (Continued)



" The product was produced by addition of  $C_6H_5MgBr$  to the acetaldehyde formed by [2 + 4] cycloreversion.

<sup>b</sup> The reaction proceeded via

<sup>c</sup> The other product was 9-anthrone, formed in unspecified yield.

| Carbon No. | Starting N                      | Aaterial                | Reaction Condition  | ons                | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Refs. |
|------------|---------------------------------|-------------------------|---------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|            | HO                              | $R_1$<br>$R_2$<br>$R_2$ | NaH, n <sup>a</sup> |                    | $= \begin{pmatrix} R_1 \\ R_2 \\ R_2 \end{pmatrix} + \begin{pmatrix} R_1 \\ R_2 \end{pmatrix} + \begin{pmatrix} R_$ |       |
|            | R <sup>1</sup>                  | R <sup>2</sup>          |                     | 1:11               | r n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| C14        | C <sub>2</sub> H <sub>5</sub> O | н                       | HMPA, 1.25 h        | 100:0              | (75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| Cis        | CH <sub>3</sub>                 | CH <sub>3</sub>         | HMPA, 6 h           | 100:0              | (85)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| C16        | C2H5O                           | CH <sub>3</sub>         | HMPA, 3 h           | 100:0              | (80)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| C16        | C <sub>2</sub> H <sub>5</sub> O | CH <sub>3</sub>         | DME, 3 h            | 35:65 <sup>b</sup> | (90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| C16        | C <sub>2</sub> H <sub>5</sub> S | CH <sub>3</sub>         | HMPA, 4 h           | 100:0 <sup>b</sup> | (85)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| C17        | i-C3H7                          | CH <sub>3</sub>         | DME, 6 h            | -                  | (0) <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| C20        | C <sub>6</sub> H <sub>5</sub>   | CH <sub>3</sub>         | DME, 24 h           | _                  | (—) <sup>d</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| C20        | p-FC6H4                         | CH <sub>3</sub>         | DME, 4 h            | 100:0              | (55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| C20        | C <sub>6</sub> H <sub>5</sub> S | CH <sub>3</sub>         | DME, 3 h            | 83:17 <sup>b</sup> | (85)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| C21        | p-CH3OC6H4O                     | CH <sub>3</sub>         | DME, 3 h            | 100:0 <sup>b</sup> | (80)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| C21        | p-CH3OC6H4S                     | CH <sub>3</sub>         | DME, 5 h            | 85:15 <sup>b</sup> | (75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |

Table XXII. Electrocyclic  $[4\pi + 2\sigma]$  Ring Opening Reactions

" The reaction is presumed to occur via intermediate



<sup>b</sup> The ratios of I and II depended on the workup conditions. <sup>c</sup> The starting alcohol was recovered.

<sup>d</sup> Numerous unidentified products were formed.

| Carbon No.                             | Starting Material   | Reaction Conditions                                                | Product(s) and Yield(s) (%)                       | Refs. |
|----------------------------------------|---------------------|--------------------------------------------------------------------|---------------------------------------------------|-------|
| C <sub>12</sub>                        | OH<br>H             | KH, THF, 25°, 1 h                                                  | (60)                                              | 146   |
| ¢.                                     |                     | <i>n</i> -C <sub>4</sub> H <sub>9</sub> Li, ether,<br>-30°, 10 min | O R SO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 32a   |
| C <sub>17</sub> 1<br>C <sub>18</sub> 1 | R = H<br>$R = CH_3$ |                                                                    | (92)<br>(23)                                      |       |
| Ĉ                                      |                     | <i>n</i> -C <sub>4</sub> H <sub>9</sub> Li, ether,<br>-30°, 10 min | O R R I                                           | 32a   |
|                                        |                     |                                                                    | + O SOC <sub>6</sub> H <sub>5</sub>               | u     |
| C17 1                                  | R = H               |                                                                    | I (48) + II (48)                                  |       |
| C18                                    | $R = CH_3$          |                                                                    | II (70)                                           |       |

Table XXIII. Electrocyclic  $[2\pi + 2\sigma]$  Ring Opening Reactions (Continued)



Carbon No. **Reaction Conditions** Product(s) and Yield(s) (%) Refs. Starting Material CH2OH CH<sub>2</sub>OH C, 160-190°, NMP (60) 191 он ő C<sub>13</sub> 0 160°, 2 h C 99 п ОНС≶СН n ш I:Ш:Ш 61 0 39 (84) n-Decane NMP 42 58 (90) 0 НМРА 36 64 0 (100) н 192 C13 NMP (2 eq), 170° (--) HO 1

Table XXIV. Solvent-Induced [3,3]-Sigmatropic Rearrangements

| Carbon No      | . Starting Material                           | Reaction Conditions | Product(s) and Yield(s) (%) | Refs. |
|----------------|-----------------------------------------------|---------------------|-----------------------------|-------|
|                | OH R                                          | КН, НМРА, 30°       |                             | 193   |
|                | R                                             | time (h)            |                             |       |
| C <sub>8</sub> | CH <sub>3</sub>                               | 48                  | (45)                        |       |
| C <sub>9</sub> | C <sub>2</sub> H <sub>5</sub>                 | 48                  | (50)                        |       |
| C10            | n-C3H7                                        | 48                  | (48)                        |       |
| C10            | i-C <sub>3</sub> H <sub>7</sub>               | 48                  | (21)                        |       |
| Cin            | CH <sub>2</sub> CH=CH <sub>2</sub>            | 24                  | (71)                        |       |
| Cu             | $CH_2C(CH_3)=CH_2$                            | 24                  | (76)                        |       |
| Cu             | C <sub>6</sub> H <sub>5</sub>                 | 24                  | (8)                         |       |
| C13            | CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 1                   | (85)                        |       |
|                | R <sup>4</sup>                                |                     | O R <sup>4</sup>            |       |
|                | UT_OH                                         | KH, THF, 25°        |                             | 170   |
|                | $R^3$ $R^1$ $R^1$                             |                     | $R^3$ $R^2$ $R^1$           |       |
|                | $R^1 R^2 R^3 R^4$                             |                     |                             |       |
| C9             | СН3 Н Н Н                                     |                     | (100)                       |       |
| C10            | СН3 Н СН3 Н                                   |                     | (100)                       |       |

Table XXV. Fragmentation Reactions

Table XXV. Fragmentation Reactions (Continued)

| Carbon No | . Starting Material           | Reaction Conditions                  | Product(s) and Yield(s) (%)        | Refs. |
|-----------|-------------------------------|--------------------------------------|------------------------------------|-------|
| C,        | OH<br>O                       | KH, THF, reflux                      | (83)                               | 113   |
|           | $i-C_3H_7 + C_3H_{7}-i$       | MNH <sub>2</sub> , 242-392°, 3.5-6 h | $i-C_3H_7$ $C_3H_7-i$ + RH<br>I II | 194   |
|           | R                             | M                                    |                                    |       |
| C10       | n-C3H7                        | Na                                   | I (19) + II (58)                   |       |
|           | i-C3H7                        | Na                                   | I (20) + II (24)                   |       |
| CII       | i-C4H9                        | Na                                   | I (37) + II (38)                   |       |
|           | r-C4Ho                        | к                                    | I (60) + II () <sup>a</sup>        |       |
|           | r-CAHo                        | Na                                   | $I(52) + II(-)^{a}$                |       |
|           | 1-C4Ho                        | Li                                   | $I(35) + II(-)^{a}$                |       |
| C12       | CH2C4Hart                     | Na                                   | I (35) + II (36)                   |       |
|           | CH2C4Hq-t                     | K                                    | $I(64) + II(-)^{a}$                |       |
| C13       | C <sub>6</sub> H <sub>5</sub> | Na                                   | I (72) + II (70)                   |       |

Table XXV. Fragmentation Reactions (Continued)



II (--)

KH, THF, 25°



Table XXV. Fragmentation Reactions (Continued)



<sup>a</sup> A minor product was 2,2,4-trimethyl-3-pentanone.

<sup>b</sup> The lithium salt was made in situ from addition of an alkenyllithium to the corresponding ketone.

Table XXVI. cis/trans Isomerizations



Table XXVI. cis/trans Isomerizations (Continued)





Table XXVI. cis/trans Isomerizations (Continued) Product(s) and Yield(s) (%) **Reaction Conditions** Refs. Carbon No. Starting Material OMgBr t-C4H9. OH 1-C4H9 Ether, rt (100)<sup>a</sup> 197 C14 t-C4Hg t-C4Hg cis/trans = 1:3 cis/trans = 1:1 HO. HO (72) 195 *n*-C<sub>4</sub>H<sub>9</sub>Li, diglyme, 17 h, 155° C27 HO HO

<sup>a</sup> In the presence of excess CH<sub>3</sub>MgBr, (t-C<sub>4</sub>H<sub>9</sub>)<sub>2</sub>COHCH<sub>3</sub> was formed.

Table XXVII. Miscellaneous Reactions

| Carbon No.                     | Starting Material                 | Reaction Conditions                                                                                                              | Product(s) and Yield(s) (%) | Refs. |
|--------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------|
| c, [                           | NH                                | CH <sub>3</sub> Li, ether,<br>30°, 1 min                                                                                         | NH (90)                     | 147   |
| $\langle$                      |                                   | (CH <sub>3</sub> ) <sub>2</sub> CuLi, THF,<br>-78°                                                                               | HO (-)"                     | 149   |
| C <sub>10</sub> C <sub>2</sub> | H <sub>5</sub> CH <sub>2</sub> OH | КН, ТНF                                                                                                                          | Polymer ()                  | 198   |
| Ő                              | H<br>H<br>H                       | KOC₄H9-t (10 eq),<br>THF, 50°                                                                                                    | (94)<br>HO O                | 199   |
| Ľ                              |                                   | <ol> <li>KOC<sub>4</sub>H<sub>9</sub>-t, DMSO,<br/>0-10°, 20 min</li> <li>(CH<sub>3</sub>O)<sub>2</sub>SO<sub>2</sub></li> </ol> | CH <sub>3</sub> O ()        | 200   |

Table XXVII. Miscellaneous Reactions (Continued)



Table XXVII. Miscellaneous Reactions (Continued)



244

## References

- 1. R. B. Woodward and R. Hoffmann, J. Am. Chem. Soc., 87, 395 (1965).
- 2. A. C. Cope and E. M. Hardy, J. Am. Chem. Soc., 62, 441 (1940).
- 3. S. J. Rhoads and N. R. Raulins, Org. React., 22, 1 (1975).
- 4. J. Berson and M. Jones, J. Am. Chem. Soc., 86, 5017 (1964).
- 5. D. A. Evans and A. M. Golob, J. Am. Chem. Soc., 97, 4765 (1975).
- 6. R. E. Ireland and R. Mueller, J. Am. Chem. Soc., 94, 5897 (1972).
- 7. S. W. Staley in *Pericyclic Reactions*, A. P. Marchand and R. E. Lehr, Eds., Academic, N.Y., 1977.
- K. E. Hamlin and A. W. Weston, Org. React., 9, 1 (1957); J. P. Gilday and L. A. Paquette, Org. Prep. Proced. Int., 22, 169 (1990).
- 9. J. J. Gajewski, Acc. Chem. Res., 13, 142 (1980).
- 10. D. A. Evans and D. J. Baillargeon, Tetrahedron Lett., 1978, 3315.
- 11. D. A. Evans and D. J. Baillargeon, Tetrahedron Lett., **1978**, 3319.
- M. L. Steigerwald, W. A. Goddard, III, and D. A. Evans, J. Am. Chem. Soc., **101**, 1994 (1979).
- 13. N. D. Epiotis and S. Shaik, J. Am. Chem. Soc., 99, 4936 (1977).
- 14. G. Ahlgren, Tetrahedron Lett., 1979, 915.
- 15. B. K. Carpenter, Tetrahedron, 34, 1877 (1978).
- 16. F. Delbecq and N. T. Anh, Nouv. J. Chim., 7, 505 (1983).
- 17. M. D. Rozeboom, J. P. Kiplinger, and J. E. Bartmess, J. Am. Chem. Soc., **106**, 1025 (1984).
- 18. R. A. Benkeser and W. E. Broxterman, J. Am. Chem. Soc., **91**, 5162 (1969).
- E. M. Arnett, L. E. Small, R. T. McIver, Jr., and J. S. Miller, J. Org. Chem., 43, 815 (1978).
- 20. M. Georges, T.-F. Tam, and B. Fraser-Reid, J. Org. Chem., **50**, 5747 (1985).
- 21a. D. Seebach, K.-H. Geiss, and M. Pohmakotr, Angew, Chem. Int. Ed. Engl., **15**, 437 (1976).
- 21b. S. M. Partington and C. I. F. Watt, J. Chem. Soc., Perkin Trans. 2, **1988**, 983.
- 22. D. A. Evans and J. V. Nelson, J. Am. Chem. Soc., 102, 774 (1980).
- 23. J. H. Rigby, J. M. Sage, and J. Raggon, J. Org. Chem., 47, 4815 (1982).
- 24. R. C. Gadwood and R. M. Lett, J. Org. Chem., 47, 2268 (1982).
- 25. J. A. Berson, Acc. Chem. Res., 1, 152 (1968).
- 26. R. L. Danheiser, C. Martinez-Devila, R. J. Auchus, and J. T. Kadonaga, J. Am. Chem. Soc., **103**, 2443 (1981).

- M. T. Zoeckler and B. K. Carpenter, J. Am. Chem. Soc., **103**, 7661 (1981).
- 28. L. A. Paquette, F. Pierre, and C. E. Cottrell, J. Am. Chem. Soc., **109**, 5731 (1987).
- 29. K. Sundaresan, Ph.D. Dissertation, University of Michigan, 1970 [Diss. Abstr. Int. B., **31**, 4597 (1971)]
- L. A. Paquette, G. D. Crouse, and A. K. Sharma, J. Am. Chem. Soc., **102**, 3972 (1980).
- 31. M. Essiz, G. Guillaumet, J. J. Brunet, and P. Caubere, J. Org. Chem., **45**, 240 (1980).
- 32a. T. Kametani, M. Tsubuki, H. Nemoto, and K. Suzuki, J. Am. Chem. Soc., 103, 1256 (1981).
- 32b. D. L. J. Clive, C. G. Russell, and S. C. Suri, J. Org. Chem., **47**, 1632 (1982).
- 32c. S. L. Schreiber and C. Santini, Tetrahedron Lett., 1981, 4651.
- 33. C. Kuroda, H. Hirota, and T. Takahashi, Chem. Lett., 1982, 249.
- 34. W. C. Still, J. Am. Chem. Soc., 99, 4186 (1977).
- 35. S. G. Levine and R. L. McDaniel, Jr., J. Org. Chem., 46, 2199 (1981).
- 36. W. C. Still, J. Am. Chem. Soc., 101, 2493 (1979).
- 37. D. L. J. Clive, A. G. Angoh, S. C. Suri, S. N. Rao, and C. G. Russell, J. Chem. Soc., Chem. Commun., **1982**, 828.
- W. C. Still, S. Murata, G. Revial, and K. Yoshihara, J. Am. Chem. Soc., 105, 625 (1983).
- 39. D. A. Holt, Tetrahedron Lett., **1981**, 2243.
- 40. P. A. Wender, D. A. Holt, and S. M. Sieburth, J. Am. Chem. Soc., **105**, 3348 (1983).
- 41. P. F. Hudrlik and A. K. Kulkarni, J. Am. Chem. Soc., **103**, 6251 (1981).
- T. L. MacDonald, K. J. Natalie, Jr., G. Prasad, and J. S. Sawyer, J. Org. Chem., **51**, 1124 (1986).
- 43. L. A. Paquette, D. T. DeRussy, and C. E. Cottrell, J. Am. Chem. Soc., 110, 890 (1988).
- 44. C. S. S. Rao, G. Kumar, K. Rajagopalan, and S. Swaminathan, Tetrahedron, **38**, 2195 (1982).
- 45. K. Thangaraj, P. C. Srinivasan, and S. Swaminathan, Tetrahedron Lett., **1982**, 4983.
- 46. P. Geetha, C. Hug, K. Rajagopalan, and S. Swaminathan, Tetrahedron Lett., **1982**, 569.
- 47. K. Thangaraj, P. C. Srinivasan, and S. Swaminathan, Synthesis, **1984**, 1010.
- 48. H. Urabe and I. Kuwajima, Tetrahedron Lett., 1983, 4241.

- H. Hauptmann, G. Muhlbauer, and N. P. C. Walker, Tetrahedron Lett., 1986, 1315.
- 50. L. A. Spangler and J. S. Swenton, J. Org. Chem., 49, 1800 (1984).
- 51. C. Kuroda, T. Nakamura, H. Hirota, K. Enomoto, and T. Takahasi, Bull. Chem. Soc. Jpn., **58**, 146 (1986).
- 52. S. F. Martin, J. B. White, and R. Wagner, J. Org. Chem., 47, 3190 (1982).
- R. E. Ireland, W. J. Thompson, G. H. Strouji, and R. Etter, J. Org. Chem., 46, 4863 (1981).
- 54. M. E. Jung and J. P. Hudspeth, J. Am. Chem. Soc., 100, 4309 (1978).
- 55. M. E. Jung and J. P. Hudspeth, J. Am. Chem. Soc., 102, 2463 (1980).
- 56a. N-C. Chang, W-F. Lu, and C.-Y. Tseng, J. Chem. Soc., Chem. Commun., **1988**, 182.
- 56b. M. E. Jung and G. L. Hatfield, Tetrahedron Lett., 1983, 2931.
- 57. J. H. Rigby and J-P. Denis, Synth. Commun., **16**, 1789 (1986).
- 58. J. A. Oplinger and L. A. Paquette, Tetrahedron Lett., 1987, 5441.
- 59. M. E. Jung and L. A. Light, J. Am. Chem. Soc., 106, 7614 (1984).
- 60. I. Fleming and N. K. Terrett, Tetrahedron Lett., 1984, 5130.
- 61. A. P. Kozikowski and R. J. Schmiesing, J. Org. Chem., 48, 1000 (1983).
- 62. K. Pramod and G. S. R. Subba Rao, Ind. J. Chem. Sect. B, **21**, 984 (1982).
- 63. L. A. Paquette and M.-A. Poupart, Tetrahedron Lett., 1988, 273.
- 64. M. Nitta, N. Komatsu, and I. Kasahara, Bull. Chem. Soc. Jpn. **53**, 2683 (1980).
- T. Miyashi, A. Hazato, and T. Mukai, J. Am. Chem. Soc., **100**, 1008 (1978).
- 66. M. Koreeda, Y. Tanaka, and A. Schwartz, J. Org. Chem., **45**, 1172 (1980).
- 67. R. L. Snowden, B. L. Muller, and K. H. Schulte-Elte, Tetrahedron Lett., **1982**, 335.
- B. M. Trost, D. E. Keeley, H. C. Arndt, J. H. Rigby, and M. J. Bogdanowicz, J. Am. Chem. Soc., **99**, 3080 (1977).
- 69. M. Kahn, Tetrahedron Lett., **1980**, 4547.
- 70a. L. A. Paquette, J. A. Colapret, and D. R. Andrews, J. Org. Chem., **50**, 201 (1985).
- 70b. L. A. Paquette, D. R. Andrews, and J. P. Springer, J. Org. Chem., **48**, 1149 (1983).
- 70c. R. C. Gadwood, R. M. Lett, and J. E. Wissinger, J. Am. Chem. Soc., **106**, 3869 (1984).
- 71. K. Mikama, S. Taya, T. Nakai, and Y. Fujita, J. Org. Chem., 46, 5447

(1981).

- 72. F. Gerard and P. Miginiac, C. R. Hebd. Seances Acad. Sci., **273**, 674 (1971).
- 73. K. Mikami, N. Kishi, T. Nakai, and Y. Fujita, Tetrahedron, **42**, 2911 (1986).
- 74. T. Nakai and K. Mikami, Chem. Rev., 86, 885 (1986).
- 75a. P. Ballester, A. Garcia-Raso, A. Gomez-Solivellas, and R. Mestres, Tetrahedron Lett., **1985**, 2485.
- 75b. D. A. Evans, D. J. Baillargeon, and J. V. Nelson, J. Am. Chem. Soc., **100**, 2242 (1978).
- 76. R. L. Snowden, S. M. Linder, B. L. Muller, and K. H. Schulte-Elte, Helv. Chim. Acta, **70**, 1858 (1987).
- 77. J. Tsuji, I. Shimizu, and Y. Kobayashi, Israel J. Chem., 24, 153 (1984).
- 78. F. M. Hauser and V. M. Baghdanov, Tetrahedron, 40, 4719 (1984).
- 79. L. K. Truesdale, D. Swanson, and R. C. Sun, Tetrahedron Lett., **1985**, 5009.
- 80. J-M. Mas, J. Gore, and M. Malacria, Tetrahedron Lett., **1986**, 3133.
- 81. M. Kakimoto and M. Okawara, Chem. Lett., **1979**, 1171.
- P. A. Wender, R. J. Ternansky, and S. M. Sieburth, Tetrahedron Lett., 1985, 4319.
- R. L. Danheiser, J. J. Bronson, and K. Okano, J. Am. Chem. Soc., **107**, 4579 (1985).
- G. Majetich, A. Casares, D. Chapman, and M. Behnke, J. Org. Chem., 51, 1745 (1986).
- H. Sakurai, Y. Eriyama, Y. Kamiyama, and Y. Nakadaira, J. Organomet. Chem., 264, 229 (1984).
- S. Swaminathan, J. P. John, and S. Ramachandran, Tetrahedron Lett., 1962, 729.
- S. Swaminathan, K. G. Srinivasan, and P. S. Venkataramani, Tetrahedron, 26, 1453 (1970).
- 88. N. Raju, K. Rajagopalan, S. Swaminathan, and J. N. Shoolery, Tetrahedron Lett., **1980**, 1577.
- 89. V. T. Ravikumar, K. Rajagopalan, and S. Swaminathan, Tetrahedron Lett., **1985**, 6137.
- 90. R. Uma, S. Swaminathan, and K. Rajagopalan, Tetrahedron Lett., **1984**, 5825.
- 91. R. Uma, K. Rajagopalan, and S. Swaminathan, Tetrahedron, **10**, 2757 (1986).
- 92. S. Swaminathan, J. Ind. Chem. Soc., **1984**, 99.
- 93. G. D. Crouse and L. A. Paquette, Tetrahedron Lett., 1981, 3167.

- 94a. L. A. Paquette and G. D. Crouse, Tetrahedron, **37**, 281 (1981).
- 94b. L. A. Paquette and G. D. Crouse, J. Am. Chem. Soc., 103, 6235 (1981).
- 95. F. E. Ziegler, U. R. Chakraborty, and R. T. Wester, Tetrahedron Lett., **1982**, 3237.
- 96. P. Auvray, P. Knochel, and J. F. Normant, Tetrahedron Lett., 1985, 4455.
- 97. E. N. Marvell and S. W. Almond, Tetrahedron Lett., 1979, 2779.
- 98. Y. Fujita, T. Onishi, and T. Nishida, Synthesis, **1978**, 934.
- 99. T. Onishi, Y. Fujita, and T. Nishida, J. Chem. Soc., Chem. Commun., **1978**, 651.
- A. Utagawa, H. Hirota, S. Ohno, and T. Takahashi, Bull. Chem. Soc. Jpn., 61, 1207 (1988).
- 101. P. A. Wender and S. M. Sieburth, Tetrahedron Lett., **1981**, 2471.
- 102. P. A. Wender, S. M. Sieburth, J. J. Petraitis, and S. K. Singh, Tetrahedron, **37**, 3967 (1981).
- 103. R. A. Benkeser, M. P. Siklosi, and E. C. Mozdzen, J. Am. Chem. Soc., 100, 2134 (1978).
- 104. U. Schöllkopf and K. Fellenberger, Justus Liebigs Ann. Chem., **698**, 80 (1966).
- 105. S. R. Wilson, D. T. Mao, K. M. Jernberg, and S. T. Ezmirly, Tetrahedron Lett., **1977**, 2559.
- 106. F. Gerard and P. Miginiac, Bull. Soc. Chim. Fr., **1974**, 1924.
- 107. P. A. Christenson, B. J. Willis, F. W. Wehrli, and S. Wehrli, J. Org. Chem., 47, 4786 (1982).
- 108. T. Hudlicky, T. M. Kutchan, and S. M. Naqi, Org. React., 33, 247 (1985).
- 109. R. L. Danheiser, C. Martinez-Davila, and J. M. Morin, Jr., J. Org. Chem., **45**, 1340 (1980).
- 110. G. N. Barber and R. A. Olofson, Tetrahedron Lett., **1976**, 3783.
- 111. D. T. Longone and W. D. Wright, Tetrahedron Lett., **1969**, 2859.
- 112. R. L. Danheiser, C. Martinez-Davila, and H. Sard, Tetrahedron, **37**, 3943 (1981).
- 113. T. Cohen, M. Bhupathy, and J. R. Matz, J. Am. Chem. Soc., **105**, 520 (1983).
- 114. D. K. Jackson, L. Narasimhan, and J. S. Swenton, J. Am. Chem. Soc., **101**, 3989 (1979).
- 115. S. R. Wilson and R. N. Misra, J. Org. Chem., 43, 4903 (1978).
- 116. C. A. Brown and A. Yamaichi, J. Chem. Soc., Chem. Commun., **1979**, 100.
- 117. W. C. Still and A. Mitra, Tetrahedron Lett., **1978**, 2659.
- 118. T. Wakamatsu, S. Hobara, and Y. Ban, Heterocycles, 19, 1395 (1982).
- 119. P. C. Ostrowski and V. V. Kane, Tetrahedron Lett., 1977, 3549.
- 120. S. R. Wilson, R. N. Misra, and G. M. Georgiadis, J. Org. Chem., **45**, 2460 (1980).
- 121. L. A. Paquette, G. D. Crouse, and A. K. Sharma, J. Am. Chem. Soc., **104**, 4411 (1982).
- 122. R. W. Thies and E. P. Seitz, J. Chem. Soc., Chem. Commun., 1976, 846.
- 123. R. W. Thies and E. P. Seitz, J. Org. Chem., 43, 1050 (1978).
- 124. R. W. Thies, M. Meshgini, R. H. Chiarello, and E. P. Seitz, J. Org. Chem., **45**, 185 (1980).
- 125. R. W. Thies and K. P. Daruwala, J. Org. Chem., 52, 3798 (1987).
- 126. B. Franzus, M. L. Scheinbaum, D. L. Waters, and H. B. Bowlin, J. Am. Chem. Soc., **98**, 1241 (1976).
- 127. T. Miyashi, A. Hazato, and T. Mukai, J. Am. Chem. Soc., 104, 891 (1982).
- 128. G. Majetich, R. W. Desmond, Jr., and J. J. Soria, J. Org. Chem., **51**, 1753 (1986).
- 129. T. Uyehara, K. Ohmori, Y. Kabasawa, and T. Kato, Chem. Lett., **1984**, 1879.
- 130. J. C. Dalton and B. G. Stokes, Tetrahedron Lett., 1975, 3179.
- 131. J. C. Dalton and H.-F. Chan, Tetrahedron Lett., 1973, 3145.
- 132. P. J. Battye and D. W. Jones, J. Chem. Soc., Chem. Commun., **1984**, 990.
- 133. L. A. Paquette, D. T. DeRussy, and R. D. Rogers, Tetrahedron, **44**, 3139 (1988).
- 134. R. F. Romanet, Ph.D. Dissertation, University of Michigan, 1971 [Diss. Abstr. Int. B., **33**, 2003 (1972)].
- 135. R. Howe and S. Winstein, J. Am. Chem. Soc., 87, 915 (1965).
- 136. A. J. H. Klunder and B. Zwanenburg, Tetrahedron Lett., 1972, 2383.
- 137. R. N. Comber, J. S. Swenton, and A. J. Wexler, J. Am. Chem. Soc., **101**, 5411 (1979).
- 138. R. L. Snowden and K. H. Schulte-Elte, Helv. Chim. Acta, 64, 2193 (1981).
- 139. A. Oku, T. Kakihana, and H. Hart, J. Am. Chem. Soc., 89, 4554 (1967).
- 140. T. V. RajanBabu, D. F. Eaton, and T. Fukunaga, J. Org. Chem., **48**, 652 (1983).
- 141. J. V. N. V. Prasad, P. Iyer, and C. N. Pillai, J. Org. Chem., **47**, 1380 (1982).
- 142. O. Papies and W. Grimme, Tetrahedron Lett., 1980, 2799.
- 143. S. Knapp, R. M. Ornaf, and K. E. Rodrigues, J. Am. Chem. Soc., **105**, 5494 (1983).
- 144. T. Miyashi, A. Ahmed, and T. Mukai, J. Chem. Soc., Chem. Commun.,

**1984**, 179.

- 145. F. Näf and G. Ohloff, Helv. Chim. Acta, 57, 1868 (1974).
- 146. R. W. Thies and H.-H. J. Shih, J. Org. Chem., 42, 280 (1977).
- 147. G. R. Krow and J. Reilly, J. Am. Chem. Soc., 97, 3837 (1975).
- 148. E. Vedejs, W. R. Wilbur, and R. Twieg, J. Org. Chem., 42, 401 (1977).
- 149. M. Koreeda and J. I. Luengo, J. Am. Chem. Soc., 107, 5572 (1985).
- 150. A. J. Bellamy, W. Crilly, J. Farthing, and G. M. Kellie, J. Chem. Soc., Perkin Trans. 1, **1974**, 2417.
- 151. S. M. Partington and C. I. F. Watt, J. Chem. Soc., Perkin Trans. 2, **1988**, 983.
- 152. C. A. Brown, J. Org. Chem., 39, 3913 (1974).
- 153. H. W. Pinnick, Org. Prep. Proced. Int., **15**, 199 (1983).
- 154. D. A. Evans, A. M. Golob, N. S. Mandel, and G. S. Mandel, J. Am. Chem. Soc., **100**, 8170 (1978).
- 155. L. A. Paquette, N. A. Pegg, D. Toops, G. D. Maynard, and R. T. Taylor, J. Am. Chem. Soc., **111**, 265 (1990).
- 156. S-L. Hsieh, C-T. Chiu, and N.-C. Chang, J. Org. Chem., 54, 3820 (1989).
- 157. L. A. Paquette, J. Reagan, S. L. Schreiber, and C. A. Teleha, J. Am. Chem. Soc., **111**, 2331 (1989).
- 158. L. A. Paquette, D. T. DeRussy, and J. C. Gallucci, J. Org. Chem., **54**, 2278 (1989).
- 159. L. A. Paquette and Y-J. Shi, J. Org. Chem., 54, 5205 (1989).
- 160. W. L. Brown and A. G. Fallis, Can. J. Chem., 65, 1828 (1987).
- 161. N-C. Chang, H-M. Day, and W-F. Lu, J. Org. Chem., 54, 4083 (1989).
- 162. J. H. Hutchinson, D. L. Kuo, T. Money, and B. Yokoyama, J. Chem. Soc., Chem. Commun., **1988**, 1281.
- 163. L. A. Paquette and J. A. Oplinger, Tetrahedron, 45, 107 (1989).
- 164. L. A. Paquette, K. S. Learn, J. L. Romine, and H. S. Lin, J. Am. Chem. Soc., **110**, 879 (1988).
- 165. L. A. Paquette and K. S. Learn, J. Am. Chem. Soc., **108**, 7873 (1986).
- 166. L. A. Paquette, C. A. Teleha, R. T. Taylor, G. D. Maynard, R. D. Rogers, J. C. Galluci, and J. P. Springer, J. Am. Chem. Soc., **112**, 265 (1990).
- 167. L. A. Paquette, D. T. DeRussy, N. A. Pegg, R. T. Taylor, and T. M. Zydowsky, J. Org. Chem., **54**, 4576 (1989).
- 168. L. A. Paquette, W. He, and R. D. Rogers, J. Org. Chem., 54, 2291 (1989).
- 169. D. A. Evans and J. M. Hoffman, J. Am. Chem. Soc., 98, 1983 (1976).
- 170. J. P. Barnier, J. Ollivier, and J. Salaun, Tetrahedron Lett., 1988, 2525.
- 171. T. A. Lyle, H. B. Mereyala, A. Pascual, and B. Frei, Helv. Chim. Acta, **67**, 774 (1984).

- 172. B. B. Snider and R. B. Beal, J. Org. Chem., 53, 4508 (1988).
- 173. L. A. Paquette, K. S. Learn, and J. L. Romine, Tetrahedron, **43**, 4989 (1987).
- 174. R. W. Wilson, J. W. Rekers, A. B. Packard, and R. C. Elder, J. Am. Chem. Soc., **102**, 1633 (1980).
- 175. H. O. House, T. S. B. Sayer, and C.-C. Yau, J. Org. Chem., **43**, 2153 (1978).
- 176. N. Sayo, Y. Kimura, and T. Nakai, Tetrahedron Lett., 1982, 3931.
- 177. E. Lee, I.-J. Shin, and T.-S. Kim, J. Am. Chem. Soc., 112, 260 (1990).
- 178. P. Ballester, A. Costa, A. Garcia Raso, A. Gomez-Solivellas, and R. Mestres, J. Chem. Soc., Perkin Trans. 1, **1988**, 1711.
- 179. M. H. Lin and W. J. Le Noble, J. Org. Chem., 54, 997 (1989).
- 180. P. A. Wender and D. A. Holt, J. Am. Chem. Soc., 107, 7771 (1985).
- 181. E. Ehlinger and P. Magnus, J. Am. Chem. Soc., 102, 5004 (1980).
- 182. B. Renger and D. Seebach, Chem. Ber., 110, 2334 (1977).
- 183. S. R. Wilson and D. T. Mao, J. Chem. Soc., Chem. Commun., 1978, 479.
- 184. M. Bhirpathy and T. Cohen, J. Am. Chem. Soc., 105, 6978 (1983).
- 185. M. E. Jung and S. M. Kaas, Tetrahedron Lett., 1989, 641.
- 186. R. W. Thies and J. R. Pierce, J. Org. Chem., 47, 798 (1982).
- 187. W. Neukam and W. Grimme, Tetrahedron Lett., 1978, 2201.
- 188. E. S. Bowman, G. B. Hughes, and J. B. Grutzner, J. Am. Chem. Soc., **98**, 8273 (1976).
- 189. A. P. Marchand, P. Annapurna, W. H. Watson, and A. Nagl, J. Chem. Soc., Chem. Commun., **1989**, 281.
- 190. R. V. Stevens and G. S. Bisacchi, J. Org. Chem., 47, 2396 (1982).
- 191. M. A. Battiste, J. R. Rocca, R. L. Wydra, J. H. Tumlinson, III, and T. Chuman, Tetrahedron Lett., **1988**, 6565.
- 192. Y. Fujita, T. Onishi, and T. Nishida, J. Chem. Soc., Chem. Commun., **1978**, 972.
- 193. R. L. Snowden, Helv. Chim. Acta, 66, 1031 (1983).
- 194. H. D. Zook, J. March, and D. F. Smith, J. Am. Chem. Soc., **81**, 1617 (1959).
- 195. M. Schlosser and P. Weiss, Synthesis, 1970, 257.
- 196. B. M. Trost and H. Hiemstra, J. Am. Chem. Soc., 104, 886 (1982).
- 197. T. Holm, Acta Chem. Scand. Ser. B., 30, 985 (1976).
- 198. A. Doutheau, G. Balme, M. Malacria, and J. Gore, Tetrahedron, **36**, 1953 (1980).
- 199. J. J. Kirchner, D. V. Pratt, and P. B. Hopkins, Tetrahedron Lett., **1988**, 4229.

- 200. M. J. Goldstein and S. A. Kline, Tetrahedron Lett., 1973, 1085.
- 201. W. G. Earley, E. J. Jacobsen, G. P. Meier, T. Oh, and L. E. Overman, Tetrahedron Lett., **1988**, 3781.

## Carbonyl Methylenation and Alkylidenation Using Titanium-Based Reagents

Stanley H. Pine, California State University, Los Angeles, California

## 1. Introduction

Alkylidenation of the carbonyl group of ketones and aldehydes is among the most useful reactions of organic synthesis. The Wittig reaction of phosphoranes is probably the most widely used method of alkylidenation, (1-4) although a variety of other approaches have been developed to accomplish this transformation. (5-8)

The observation that titanium-based reagents can accomplish such a transformation (9-11) has provided a new approach to alkylidenation. Not only do these reagents accomplish alkylidenation of the carbonyl group of aldehydes and ketones, but they are also effective with esters, (10, 12-14) lactones, (10, 15, 16) amides, (12, 17) thioesters, (18) and certain other carboxylic acid derivatives. (19, 20) Alkylidenation of the carbonyl group of carboxylic acid derivatives cannot normally be accomplished by the Wittig reaction. (21, 22)

Initial interest in the reaction focused on methylenation using the titanium–aluminum complex known as the Tebbe reagent **1**. (9)



Pine, Grubbs, Evans, and co-workers explored the reactions of **1** with carboxylic esters and observed their conversion to enol ethers in high yield. (9, 10, 12)

$$R \xrightarrow{O} R' + 1 \longrightarrow R \xrightarrow{CH_2} R'$$

Furthermore, **1** was also found to methylenate aldehydes and ketones, sometimes more effectively than the Wittig method. (23, 24) The related titanium metallacycles **2**, which are prepared from **1** and an alkene in the presence of a Lewis base, (25) accomplish similar alkylidenations. (15)



During the same period Takai and co-workers reported a still undefined reagent **3** prepared from zinc, a dihalomethane, and titanium tetrachloride that was shown to methylenate aldehydes and ketones. (11) Modification of this mixture provides a reagent that accomplishes methylenation and alkylidenation of carboxylic acid derivatives. (14, 18, 19, 26) An alternative preparation of **3** by Lombardo (27, 28) has also received wide use.

$$Zn - CH_2X_2 - TiCl_4$$
  
3

Reagents for carbonyl alkylidenation involving titanium–magnesium, (29) zirconium, (30, 31) tantalum, (32) tungsten, 33,33a molybdenum, (34-37) boron, (38) and chromium (39) have also been studied, but none has found such broad use in synthesis as **1** and **3**.

## 2. Mechanism and Stereochemistry

The structure of the Tebbe reagent (1) is well established as a titanium–aluminum metallacycle. It is the bridging methylene that is transferred to the carbonyl. (9) The reactive species is believed to be the titanium methylidene 4 generated when a Lewis base (LB) complexes with the aluminum atom of 1. (9, 15, 40)

 $1 + LB \longrightarrow [Cp_2Ti = CH_2] + (CH_3)_2CIAI \cdots LB$ 4

The titanium methylidene 4 and some homologs have also been generated thermally from the titanium metallacycles 2. (15)

Intermediate **4** is very reactive and has never been isolated or observed spectroscopically. (41, 42) However, **4** has been observed as a tetrahydrofuran complex (43) and isolated as its phosphine complex (40, 44-46) Homologous phosphine complexes are known, (47) although their use in alkylidenation has not been reported. Intermediate **4** is generally classified as a nucleophilic carbene in an operational description of its reactivity. (32, 48)

In contrast to 1 and 2, there appears to be little information about the species involved in the reagent mixture 3. It is generally considered to be a *gem*-dimetallamethane. (11, 49-53) Here, functional group specificity seems to depend on reaction conditions, (18, 19) and even on the mode of preparation of the reagent. (27, 28)

In the absence of an added Lewis base, reaction of **1** with an ester such as methyl benzoate proceeds slowly ( $t_{1/2} \gg 1$  hour) to produce the enol ether. The reaction is first order in reagent and first order in ester. The large negative entropy value for this reaction suggests that a complex intermediate forms which then leads to product. (54) When a Lewis base is added to the reaction mixture, methylenation is quite rapid and is usually complete in minutes. In this case the Lewis base presumably complexes with the aluminum portion of **1** to free **4** for reaction with the carbonyl group. Ketones and amides react rapidly even in the absence of added Lewis base.

The metallacycles **2** react by a thermal process in which an alkene is eliminated to provide **4**. (40, 55) It has been suggested that a driving force for alkylidenation of a carbonyl by **2** is the formation of titanocene oxide. (56)



Alkylidenation of a carbonyl group can give either *E* or *Z* stereoisomers. Within a limited number of experimental examples, the *Z* isomer generally predominates. This result has been observed for esters, (14, 50) ketones, (14) thioesters, (18) and silyl esters. (19) By contrast, amides lead predominately to *E* enamines. (18) In all of these classes of compounds the degree of stereoselectivity is variable and appears to be related to the size of the groups surrounding the carbonyl. (18)

## 3. Scope and Limitations

These titanium-based reagents were initially explored to supplement the Wittig alkylidenation. The Wittig reaction has some synthetic limitations. Wittig reagents do not alkylidenate the carbonyl group of esters and other carboxylic acid derivatives; the reaction rate is low because of steric hindrance at the carbonyl, and there is a tendency for enolization to occur with certain substrates.

### 3.1. Methylenation of Esters

Reagent 1 converts esters to enol esters in high yield. (9, 10, 12) Metallacycles 2, though not widely used, also acomplish the same transformation. (15) Reagent 1 provides the only one-step synthesis of a vinyl ether from an ester. It reacts with a large variety of substrates including aromatic, aliphatic, and cyclic esters (lactones) as well as formates, carbonates, silyl esters, and thioesters.

In addition to the isolation and use of enol ethers as synthetic products, one useful application associated with **1** is the ability to convert esters with an appropriately positioned double bond to products derived from a subsequent electrocyclic rearrangement. (**13**, 57-63) In some reactions Claisen rearrangement occurs without isolation of the enol ether intermediate. (**57**, 61, 63) It has been suggested that the aluminum- or titanium-containing byproducts function as Lewis acid catalysts for the rearrangement.



The Zn -  $CH_2X_2$  - TiCl<sub>4</sub> mixture **3** has had very limited use for ester methylenation. (13, 57, 64)

### 3.2. Alkylidenation of Esters

Reagents 1 and 2 only accomplish methylenation of the ester carbonyl group. However, the use of 1,1-dihaloalkanes instead of dihalomethanes in the preparation of 3 leads to a new reagent 5 that accomplishes general alkylidenation of esters. (14) Tetramethylethylenediamine (TMEDA) is required, and the reagents are mixed in a different order than that used for 3.

## Zn — RCHX<sub>2</sub> — TiCl<sub>4</sub> — TMEDA 5

One may speculate that TMEDA complexes with the metal of the mixture to enhance reactivity toward an ester carbonyl group. The process produces mixtures of geometrical isomers in which the *Z* stereoisomer predominates. (14, 50) The difficulty in forming the requisite dihaloalkanes can be the limiting step in such an application.



An intramolecular ester alkylidenation was used in a synthesis of capnellene. (65, 66) A titanium metallacycle 2 was formed from a norbornene derivative containing an ester by using 1 in the presence of *p*-dimethylaminopyridine (DMAP). The strained alkene of norbornene formed a particularly stable metallacycle, (66) while the hindered *endo-tert*-butyl ester did not react with 1. Subsequent heating of the metallacycle derivative generated the titanium alkylidene which then accomplished an intramolecular alkylidenation of the ester.



### 3.3. Reactions with Other Carboxylic Acid Derivatives

Silyl esters and thioesters react with **1** (67) and **5** (18, 19) to produce the corresponding enol ethers by a process similar to that discussed above for esters.



Amides react with 1 to give methylenenamines. (12)



The method provides an attractive alternative to established methods of enamine formation. (68-70) Difficulty in recovery of unstable enamines is often a limitation of the procedure. However, alkylation of the enamine formed with 1 can, in principle, provide the product of amide alkylidenation. There is one report of an amide alkylidenation using **5**. (18)



Acyl halides react with 1 or 2 to give titanium enolates rather than the chloro-vinyl products expected from carbonyl methylenation. (71-73) The alternative sequence has been attributed to the lability of the halide in an initially formed titanium oxametallacycle. This route to titanium enolates and their subsequent alkylation does have synthetic utility. (73)



Anhydrides and imides follow pathways similar to that of an acyl halide in their reaction with 1 or 2, (20) although the synthetic utility of this chemistry has not been explored.

### 3.4. Methylenation of Ketones and Aldehydes

The principal use of these titanium reagents has been for the methylenation of ketones and aldehydes, a process that duplicates the classical Wittig procedure with methylenetriphenylphosphorane. Reagents 1, 2, and 3 have shown general utility with a large variety of structures. Reagent 3 has had the broadest range of applications with ketones and aldehydes since it does not react with esters and appears to be more tolerant than 1 or 2 toward the presence of other functional groups. The reagents generally react more rapidly than the analogous Wittig reagent and have proven particularly useful for transformations that cannot be accomplished satisfactorily by the Wittig reaction.



Steric hindrance is one of the factors that severely limits the Wittig methylenation. (7, 74, 75) In a study that compared the effectiveness of **1** with methylenetriphenylphosphorane for ketone methylenation, it was found that the titanium reagent is markedly superior to the Wittig reagent when the carbonyl group is hindered. (23)



The basic nature of Wittig reagents and most of the processes that involve an elimination step to accomplish alkylidenation (5, 7, 76) can limit effective reaction with enolizable ketones. This problem is commonly associated with the acidity of the substrate or with steric hindrance that inhibits reaction at the carbonyl. (57) By contrast the titanium reagents have proven particularly effective for the methylenation of enolizable ketones. (24, 27, 77-82)



Methylenation of aldehydes has been carried out using all of the titanium reagents discussed above. In one example, reaction of **3** with an unsaturated aldehyde proceeded through a diene that underwent a Diels–Alder cyclization. (62)



#### 3.5. Alkylidenation of Ketones

A significant limitation to the use of the titanium reagents **1**, **2**, and **3** is that they only accomplish methylenation of a ketone. Attempts to form higher homologs of the titanium–aluminum metallacycle following the synthesis model for **1** are not successful. This has been attributed to decomposition by  $\beta$ -hydride elimination. (**30**, **83**) Homologs of **1** have been prepared by hydroalumination of an alkenyltitanium, (**30**) hydrotitanation of an alkenylalane, (**84**) methyltitanation of an alkynylalane, (**85**) and from a divinyltitanocene. (**86**) These potential reagents for carbonyl alkylidenation have not yet been used in synthesis.

A clever approach to alkylidenation involves exchange of one alkylidene group

of the titanium metallacycle for another using an allene, and then allowing the new metallacycle to alkylidenate a ketone. (87) A new allene is formed.



Although alkylidenation of esters and amides has been accomplished through the modified reagent **5** generated from a 1,1-dihalo compound, there are no published reports of similar alkylidenation being carried out with aldehydes or ketones. (88)

#### 3.6. Functional Group Selectivity

Reagents 1 and 2 methylenate the carbonyl group of aldehydes, ketones, esters, and amides. Ketones and amides react with 1 more rapidly than esters so that it is often possible to selectively methylenate only one functional group. (12, 89) However, the reactivity differences are not great, and unless a functional group is hindered, (66, 89) it may be advisable to protect one of the groups while the other undergoes reaction. Reagent 1 reacts with acidic hydrogens such as those on alcohols or carboxylic acids, and those functional groups usually should be protected.

Reagent mixture **3** is selective for ketones and aldehydes, hence methylenation is effective in the presence of esters. (77, 90-95) and hydroxy groups. (96-99) An interesting modification of **3** allows selective reaction of an aldehyde in the presence of a ketone by using  $Ti(OPr-i)_4$  instead of  $TiCl_4$ . (51) Furthermore, reaction of a ketone in the presence of an aldehyde can be accomplished by first complexing the aldehyde carbonyl with  $Ti(NEt_2)_4$ , then using reagent **3**. (51)



Reagent 1 reacts with carbon–carbon double bonds to form metallacycles, (25) but at a rate that is slower than its reaction with a carbonyl group. Although there is the potential for interaction of 1 with a double bond in the substrate that could lead to E-Z or positional isomerization, this has generally not been a problem. (10, 12) A few examples of positional isomerization have been reported (100-102) but appear to be due to residual metals or the presence of a proton source.

### 4. Other Alkylidenation Methods

Direct alkylidenation of the carbonyl group of carboxylic acid derivatives was not a viable synthetic operation prior to the availability of **1**. (21, 22, 103) However, many methods had been developed for alkylidenation of aldehydes and ketones. The most widely used is the Wittig reaction using phosphoranes (1) and related phosphonates. (104, 105) The Wittig method is often unsuccessful when the carbonyl group is sterically crowded, (7, 74, 75, 106) and its basic condition can lead to enolization or epimerization of the substrate. (57, 78, 80) Modifications to the preparation of the phosphorus ylides have minimized some of these problems. (107-110)

A variety of methods have been developed which involve addition of an anionic reagent to the carbonyl carbon, then elimination of the alcohol intermediate. Like the Wittig reaction, most of these involve basic reaction conditions and result in enolization. These anionic include can reagents trimethylsilylmethylmagnesium chloride, (5) trimethylsilylmethyllithium, (111) trimethylsilylmethyllithium-cerium trichloride, (112) trimethylsilylbenzyllithium, (113) phenylthiomethyllithium, (7) triphenylstannylmethyllithium, (6) sodium 1-lithioalkyldimethylphosphonothionates, phenylselenide, (114)(76) lithioalkylphenylphosphinothioic amides. (8) and methylphenylsulfonimidoylmethyllithium. (115)

### **5. Reaction Conditions**

The Tebbe reagent 1, a deep red moisture-sensitive solid, can be prepared in advance of its use (9) since it is stable indefinitely as a dry solid or as a homogeneous solution in toluene or benzene. It it available commercially and is usually used in stoichiometric quantities.

In situ methods for preparation of the reagent have also been developed to simplify its use, (72, 100, 116, 117) although yields of the methylenation product are generally lower than those obtained by using the pure reagent. The metallacyclic analogs 2 of 1 are prepared from 1 (25) and are reported to be more air stable than 1. They usually must be heated to provide the active alkylidene. Their use in synthesis has been rather limited.

Because of its sensitivity to moisture, **1** is handled by common inert atmosphere techniques. (118) Solvents and apparatus should be dry. Solvents are usually dried and freed of oxygen by distillation from sodium–benzophenone ketyl. (119) In some reactions, base washing of apparatus to remove acid residues has led to enhanced yields. (100)

Reagent mixture **3** (and **5**) is normally prepared in situ as needed for use. It is a dark viscous material that is only partially soluble in the solvents usually used for reaction (tetrahydrofuran and dichloromethane). Methods involving a three-day preparation (28) or a 15 to 30-minute preparation (11) are both in general use, although the longer period is reported to provide better results. (28) The methylene reagent **3** slowly decomposes at room temperature but can be stored for up to one year at  $-20^{\circ}$ . (28) Reactions are usually carried out using stoichiometric amounts of titanium tetrachloride relative to the carbonyl compound with excess zinc and dihalomethane. (28) In some cases large excesses of all reagents relative to the carbonyl are needed to provide good yields. (82, 120, 121) The zinc is usually activated by washing with hydrochloric acid (28, 122) and in some cases purity of the zinc (16) and titanium tetrachloride (92) has proven important for good yields of product. Dry solvents and an inert atmosphere are used.

Purification of most of the products of these reactions involves chromatography to separate the inorganic residues from the organic product. Enol ethers may undergo hydrolysis or isomerization during chromatography by an acid-catalyzed mechanism. In this case, product stability is often enhanced by using basic alumina, and in some examples the eluent is saturated with trimethylamine. (12)

All of the titanium reagents mentioned above react with moisture. Residues from the reaction procedures can usually be destroyed by careful quenching

with acetone. Aluminum-containing residues react more vigorously and are better destroyed with butanol.

## 6. Experimental Procedures

## 6.1.1.1. (5'-tert-Butyl-1'-cyclohexenyl)methyl 2-(1-Butenyl) Ether

(Methylenation of an Ester Using the Tebbe Reagent 1) (60) To a solution of 0.303 g (1.34 mmol) of 5-*tert*-butyl-1-cyclohexenylmethyl propanoate in 3 mL of THF cooled to  $-40^{\circ}$  was added 4.5 mL of a 0.33 M solution (1.48 mmol) of Tebbe reagent in toluene over a period of 3 minutes. After 1 hour at  $-40^{\circ}$ , the reaction mixture was allowed to warm to room temperature and stirred further for 1.5 hours. The reaction was quenched with 0.5 mL of 10% aqueous sodium hydroxide, then diluted with 100 mL of diethyl ether. After drying with anhydrous sodium sulfate and filtering through Celite, the solvent was removed under vacuum. The product was purified by chromatography using alumina (activity III) with hexane as eluent. The enol ether, 0.257 g (86%), was recovered as a colorless oil (bp 60°, 0.1 torr). <sup>1</sup>H NMR ( CDCl<sub>3</sub>)  $\delta$  0.88 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>) , 1.0–2.35 (m, 12H), 3.82 (br s, 2H, CH<sub>2</sub>O) , 4.05 (br s, 2H C = CH<sub>2</sub>), 5.72 (br s, 1H, C = CHC).

# 6.1.1.2. 3-Benzyloxy-1-phenyl-1,3-butadiene (Methylenation of a Conjugated Ester Using the Tebbe Reagent 1) (12)

To a solution of 0.238 g (1 mmol) of benzyl cinnamate in 2–3 mL of THF at 0° was added 2 mL of 0.5 M Tebbe reagent (1 mmol) in benzene. After 30 minutes, 10–20 mL of ether was added, then 5–10 drops of anhydrous methanol was slowly added. The resulting slurry was filtered through Celite and the filtrate concentrated by rotary evaporation. Purification by chromatography on basic alumina using 2% ether/pentane gave 0.195 g (82%) of product. <sup>1</sup>H NMR ( CCl<sub>4</sub>)  $\delta$  4.2 (s, 2H, ArCH<sub>2</sub>), 4.75 (s, 2H, = CH<sub>2</sub>), 6.3–7.2 (m, 2H, CH = CH), 7.0–7.4 (m, 10H, Ar-H).

# 6.1.1.3. 1-Phenoxy-1-phenylethene (Methylenation of an Ester Using the in situ Tebbe Reagent 1) (100)

To a 250-mL round-bottom flask equipped with a magnetic stirrer and an inert gas purge was added 5.0 g (20 mmol) of titanocene dichloride [bis(cyclopentadienyl)titanium dichloride], followed by 20 mL of a solution of 2 M trimethylaluminum in toluene (40 mmol). The resulting red solution was stirred at room temperature for 3 days as methane gas evolved. The resulting solution contains the Tebbe reagent. The solution was cooled in ice water, then 4.0 g (20 mmol) of phenyl benzoate in 20 mL of dry THF was added over 5–10 minutes. The reaction was allowed to warm to room temperature over 30–45 minutes, then 50 mL of anhydrous diethyl ether was added. At this point the inert atmosphere is no longer needed. Approximately 50 drops of 1 M aqueous sodium hydroxide was carefully added over 10–20 minutes. The resulting slurry was stirred until gas evolution ceased (about 20 minutes). Anhydrous sodium sulfate was then added and the slurry passed through a Celite pad on a coarse-frit Büchner funnel. The Celite was rinsed with

additional ether, then the solvent was concentrated to a volume of 5–8 mL using a rotary evaporator. The crude product was purified by column chromatography on basic alumina (150 g) eluting with 10% ether in pentane. Evaporation of the product-containing fractions provided 2.8 g (70%) of the desired enol ether. <sup>1</sup>H-NMR (250 MHz, CDCl<sub>3</sub>)  $\delta$  4.45 (d, 1H, *J* = 2.3 Hz, = CH), 5.05 (d, 1H, *J* = 2.3 Hz, = CH), 7.06–7.11 (m, 3H, Ar-H), 7.29–7.38 (m, 5H, Ar), 7.66–7.70 (m, 2H, Ar-H); IR (neat) 1600, 1495, 1290, 1230 cm–1.

6.1.1.4. 5-(3¢-Benzyloxypropyl)-1,2-dimethyl-4-methylene-3,9-dioxabicyclo-[4. 2.1]nonane (Methylenation of a Lactone Using the Tebbe Reagent 1) (123) A solution of 4.5 g (14.2 mmol) of the bicyclic ketone 5-(3¢-benzyloxypropyl)-1,2-dimethyl-3,9-dioxabicyclo[4.2.1]nonan-4-one in 57 mL of anhydrous THF was cooled to -45°. To this solution was added 0.7 mL of freshly distilled pyridine followed by a cooled solution (-45°) of 6.1 g (19.3 mmol) of Tebbe's reagent in 28 mL of toluene. The reaction was maintained at -45° for 40 minutes and then allowed to warm to 20° over 2 hours. After an additional 45 minutes, the red solution was cooled to 0° and 6 mL of 15% aqueous NaOH was carefully added. After 1 hour, 60 mL of ether was added and the resulting slurry was filtered through 300 g of neutral alumina (activity III) with 1 L of hexane followed by 500 mL of ether. Evaporation of the solvent in vacuo afforded 4.2 g (94%) of product as a yellow oil. <sup>1</sup>H NMR (90 MHz, CCl<sub>4</sub>)  $\delta$  1.05 (s, 3H, CH<sub>3</sub>), 1.11, (d, 3H, J = 7 Hz, OCHCH<sub>3</sub>), 1.2–2.3 (m, 8H), 2.66 (q, 1H, *J* = 6 Hz, allylic CH), 3.33 (t, 2H, J = 6 Hz, PhCH<sub>2</sub>OCH<sub>2</sub>), 3.56 (q, 1H, J = 7 Hz, OCH-CH<sub>3</sub>), 4.20 (m, 1H, tetrahydrofuranyl CH), 4.22 (s, 1H, vinyl CH), 4.38 (s, 2H, PhCH<sub>2</sub>O), 4.48 (s, 1H, vinyl CH), 7.21 (s, 5H, Ar-H).

# 6.1.1.5. 3,4-Dihydro-2-methylene-2H-1-benzopyran (Methylenation of a Lactone Using the in situ Tebbe Reagent **1**) (100)

To a 250-mL round-bottom flask equipped with a magnetic stirrer and an inert gas purge was added 5.0 g (20 mmol) of titanocene dichloride [bis(cyclopentadienyl)titanium dichloride], followed by 20 mL of a solution of 2 M trimethylaluminum in toluene (40 mmol). The resulting red solution was stirred at room temperature for 3 days as methane gas evolved. The resulting solution contains the Tebbe reagent. The solution was cooled in dry ice-acetone, then 3.0 g (20 mmol) of dihydrocoumarin in 20 mL of dry THF was added over 5–10 minutes. The solution was allowed to warm to room temperature over 30-45 minutes, then 50 mL of anhydrous diethyl ether added. At this point the inert atmosphere is no longer needed. Approximately 50 drops of 1 M aqueous sodium hydroxide was carefully added over 10–20 minutes. The resulting slurry was stirred until gas evolution ceased (about 20 minutes). Anhydrous sodium sulfate was then added and the slurry passed through a Celite pad on a coarse-frit Büchner funnel. The Celite was rinsed with additional ether, then the solution was concentrated to a volume of 5–8 mL using a rotary evaporator. The crude product was purified by column

chromatography on basic alumina (150 g) eluting with 10% ether in pentane. Evaporation of the product-containing fractions provided 1.9 g (67%) of the enol ether. <sup>1</sup>H NMR (250 mHz, CDCl<sub>3</sub>),  $\delta$  2.57 (t, 2H, *J* = 6.5 Hz, -CH<sub>2</sub>), 2.80 (t, 2H, *J* = 6.5 Hz, Ar-CH<sub>2</sub>), 4.14 (s, 1H, =CH), 4.55 (s, 1H, = CH), 6.85–6.92 (m, 2H, Ar-H), 7.03–7.07 (m, 1H, Ar-H), 7.11–7.18 (m, 1H, Ar-H); IR (neat) 1665, 1595, 1500, 1470, 1250, 990, 770 cm<sup>-1</sup>.

# 6.1.1.6. 2-Methoxy-1-trimethylsilyl-1-tridecene (Alkylidenation of an Ester Using a Modified Takai Reagent **5**) (26)

To a solution of 15 mL of THF and 6 mL of CH<sub>2</sub>Cl<sub>2</sub> at 0° was added a solution of 2 mL of 2 M TiCl<sub>4</sub> in CH<sub>2</sub>Cl<sub>2</sub> (4 mmol). The yellow solution was warmed to 25° then 1.2 mL (8 mmol) of TMEDA was added and the mixture was stirred for 15 minutes. Zinc dust (0.57 g, 9.0 mmol) was then added and the mixture was stirred for 30 minutes. A solution of 0.198 g (1.0 mmol) of methyl dodecanoate and 0.54 g (2.2 mmol) of dibromotrimethylsilylmethane in 1 mL of  $CH_2Cl_2$  was added to the reagent mixture. After the reaction mixture was stirred for 3 hours at 25°, 10 mL of THF was added and the mixture was cooled to 0°. A solution of 2 mL of saturated aqueous sodium carbonate was added, and the mixture was stirred at 0° for 1 hour. The mixture was diluted with 10 mL of 200:1 ether/triethylamine and then passed rapidly through a short column of basic alumina (activity III). The resulting solution was concentrated and the solid filtered through Hyflo Super-Cel using 50 mL of 200:1 hexane/Et<sub>3</sub>N as eluent. Concentration of the filtrate followed by chromatography on basic alumina (activity III) using 200:1 hexane/ Et<sub>3</sub>N and evaporation of the solvent gave 0.246 g (92%) of a mixture of isomers. <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  0.05 [s, 9H, Si(CH<sub>3</sub>)<sub>3</sub>], 0.88 (t, 3H, J = 7 Hz, CH<sub>3</sub>), 1.20–1.70 (m, 18H), 2.16 (t, 2H, J = 7 Hz, CH<sub>2</sub>C = ), 3.48 (s, 3H, E-OCH<sub>3</sub>), 3.51 (s, 3H, *Z*-OCH<sub>3</sub>), 4.00 (s, 1H, *E*- = CH), 4.30 (s, 1H, *Z*- = CH).

# 6.1.1.7. 4-Phenyl-1-methylidenecyclohexane (Methylenation of a Ketone Using the in situ Tebbe Reagent 1) (116)

To a 250-mL round-bottom flask equipped with a magnetic stirrer and an argon purge was added 12.45 g (50 mmol) of titanocene dichloride. A solution of 2 M trimethylaluminum in toluene (55 mL, 110 mmol) was transferred into this flask via cannula from an argon-purged graduated cylinder. The resulting red solution was stirred at room temperature as methane evolved. After 72 hours, an additional 20 mL of 2 M trimethylaluminum in toluene was added (a total of 150 mmol of trimethylaluminum) and stirring was continued for an additional 12 hours. To a 500-mL round-bottom flask equipped with an argon purge and magnetic stirrer was added 11.3 g (65 mmol) of 4-phenylcyclohexanone and 80 mL of dry THF. This solution was cooled to  $-40^{\circ}$ , then the previously prepared in situ Tebbe reagent was added via cannula over 10 minutes while maintaining the temperature at or below  $-40^{\circ}$ . Stirring was continued for 0.5 hour at  $-40^{\circ}$ , for 1.5 hours at -40 to 0°, and for 1 hour at room temperature. Reagent grade THF (50 mL) was added and the resulting mixture cooled to

 $-10^{\circ}$ . An aqueous solution of 15% sodium hydroxide was added slowly while the mixture was maintained at  $-10^{\circ}$ . As methane evolution slowed, the sodium hydroxide solution was added more rapidly, and stirring or swirling was continued with the viscous mixture. The mixture was filtered using a coarse-frit Büchner funnel, washing the residue with ether. The solvent was removed using a rotary evaporator, and the resulting toluene solution of the product was diluted with 300 mL of pentane. The resulting slurry was filtered as described above and the residue was washed with additional pentane. Removal of the solvent followed by reduced pressure distillation afforded 9.2 g (82%) of product (bp 88°, 2 torr). <sup>1</sup>H NMR ( CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  1.45–2.89 (m, 9H, ring), 4.72 (m, 2H, = CH<sub>2</sub>), 7.26 (m, 5H, Ar-H); <sup>13</sup>C NMR ( CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$ 35.7, 36.1, 44.6 107.6, 126.4, 127.3, 128.8, 147.5, 149.4.

# 6.1.1.8. 2,6-Dimethylmethylidenecyclohexane (Methylenation of a Hindered Ketone Using the Tebbe Reagent 1) (23)

To a solution of 0.126 g (0.001 mol) of 2,6-dimethylcyclohexanone in 2–3 mL of THF at 0° was added a solution of 2 mL of 0.5 M Tebbe reagent in benzene (0.001 mol). The solution was allowed to warm to room temperature over a period of 30 minutes. Ether (15–20 mL) was added, followed by careful addition of 5–10 drops of 0.1 M aqueous NaOH. After the gas evolution ceased, the solution was dried with anhydrous sodium sulfate, then filtered through a pad of Celite. Rotary evaporation of the solvent provided the crude product which was then purified by chromatography using neutral alumina with an eluent of 2% ether in petroleum ether (40–60°). Evaporation of the solvent gave 0.120 g (97%) of product. <sup>1</sup>H NMR ( CCl<sub>4</sub>, 90 MHz)  $\delta$  1.0 (d, 6H, *J* = 6 Hz, CH<sub>3</sub>), 1.3–2.2 (m, 8H, ring), 4.5 (s, 2H, vinyl CH<sub>2</sub>).

# 6.1.1.9. 3-Methylene-p-menthane (Methylenation of a Ketone Using the Lombardo Modification 3) (28)

To a 1-L round-bottom flask with a magnetic stirrer, pressure-equalizing dropping funnel, and nitrogen purge was added 28.75 g (0.44 mol) of activated zinc powder, (122) 250 mL of dry THF, and 10.1 mL (0.144 mol) of dibromomethane. The mixture was stirred and cooled to -40°, then 11.5 mL (0.103 mol) of titanium tetrachloride was added over 15 minutes. The mixture was then stirred for 3 days at 5°. The resulting slurry was cooled to 0° and 50 mL of dry dichloromethane added. To this mixture at 0° was added 15.4 g (0.1 mol) of isomenthone over 10 minutes. The reaction mixture was stirred at 20° for 1.5 hours. The mixture was then diluted with 300 mL of pentane and a slurry of 150 g of sodium bicarbonate in 80 mL of water was added carefully over 1 hour. The organic layer was decanted into a 1.5-L flask and the residue was washed with three 50-mL portions of pentane. The combined organic solution was dried with 100 g of anhydrous sodium sulfate and 20 g of sodium bicarbonate. The organic solution was recovered by filtration and the solvent was removed by flash distillation. The residue was distilled under reduced pressure to give 13.6 g (89%) of product (bp 105–107°, 90 torr). <sup>1</sup>H NMR

( CDCl<sub>3</sub>, 200 MHz)  $\delta$  0.79 (d, 3H, J = 7 Hz, - CH<sub>3</sub>), 0.91 (d, 6H, J = 7 Hz, - CH<sub>3</sub>), 1.01–2.14 (m, 9H, - CH, ring - CH<sub>2</sub>), 4.54 (s, 1H, =CH), 4.60 (s, 1H, - CH); <sup>13</sup>C NMR ( CDCl<sub>3</sub>)  $\delta$  17.4, 18.3, 19.2, 22.6, 25.8, 26.5, 31.8, 37.3, 47.4, 104.6, 148.4.

6.1.1.10. 2-(tert-Butyldimethylsiloxy)-4a-methyl-3-(1-methylethylidene)-5-meth ylene-3,4,4a,5,6,7,8,8a-octahydronaphthalene (Methylenation of a Hindered Ketone Using the Lombardo Modification **3**) (82)

To a solution of 0.174 g (0.52 mmol) of

6-(*tert*-butyldimethylsiloxy)-8a-methyl-7-(1-methylethylidene)-3,4,4a,7,8,8a-he xahydro-1(2*H*)-naphthalenone in 15 mL of CH<sub>2</sub>Cl<sub>2</sub> at room temperature was added reagent **3** (28) prepared from 0.601 g (9.2 mmol of zinc dust, 7 mL of THF, 0.22 mL (3.1 mmol) of CH<sub>2</sub>Br<sub>2</sub>, and 0.24 mL (2.2 mmol) of TiCl<sub>4</sub>. The mixture was stirred for 45 minutes, then several milliliters of triethylamine was added followed by saturated aqueous sodium bicarbonate. The organic layer was washed with 15 mL of brine and dried over sodium sulfate, and the solvent was evaporated. The crude product was purified by preparative TLC on a Chromatotron with 10% ether/pentane. The first band to elute gave, after evaporation, 0.162 g (94%) of product as a 2:1 mixture of isomers. <sup>1</sup>H NMR ( CDCl<sub>3</sub>, 200 MHz)  $\delta$  0.10, 0.15 (2 s, 6H), 0.89, 0.95, 1.10 (3 s, 12H), 1.18–2.65 (m 15H), 4.52–4.72 (m, 3H).

6.1.1.11. 8-tert-Butyldimethylsilyloxy-1-[(2-methoxyethoxy)methoxy]-4-methyle ne-1  $\alpha$  ,2,3,3a  $\alpha$  ,4,5,8  $\beta$  ,8a  $\alpha$  -octahydroazulene (Methylenation of an Enolizable Ketone Using the Lombardo Modification **3**) (124) To a stirred solution of 0.576 g (1.47 mmol) of

8-[(tert-butyldimethylsilyl)oxy]-1-[(2-methoxyethoxy)methoxy]-1 α,2,3,3a α,8  $\beta$ ,8a  $\alpha$  -hexahydroazulen-4(5*H*)-one in 3 mL of methylene chloride was added Lombardo's reagent (28) in small portions via a pipet. The reaction was monitored by TLC, and when the starting material had been consumed the reaction mixture was diluted with 100 mL of ether. The ether mixture was shaken with 100 mL of saturated aqueous sodium bicarbonate until the organic layer was clear, then the aqueous phase was backwashed with several 100-mL portions of ether. The combined organic layers were dried over anhydrous sodium sulfate and evaporated under reduced pressure to give crude product. Flash chromatography on 20 g of silica gel (1:3 ether/hexanes) gave pure product: 0.557 g (99%). <sup>1</sup>H NMR (CCl<sub>4</sub>)  $\delta$  0.01 [s, 6H, Si(CH<sub>3</sub>)<sub>2</sub>], 0.85 [s, 9H, SiC(CH<sub>3</sub>)<sub>3</sub>], 1.49 (m, 1H), 1.88 (m, 1H), 2.04–2.28 (m, 2H), 2.33 (dd, 1H, J = 4.0, 11.0 Hz), 2.68 (m, 1H), 2.82 (m, 1H), 3.03 (dddd, 1H, J = 2.7, 2.7, 2.7, 18.6 Hz), 3.42 (s, 3H, OCH<sub>3</sub>), 3.59 (m, 3H), 3.90 (m, 1H), 4.00 (m, 1H), 4.75 (m, 3H), 4.97 (br s, 1H, =CH<sub>2</sub>), 5.00 (br s, 1H, = CH<sub>2</sub>), 5.31 (dddd, 1H, J = 2.7, 2.7, 5.2, 11.6 HZ, C = CH), 5.56 (m, 1H, C = CH).

6.1.1.12. trans-3,4-Diphenyl-1-methylidenecyclopentane (Methylenation of a Ketone Using the Takai Reagent **3** Prepared from Diiodomethane) (125)

To a well-stirred suspension of 9.95 g (152 mmol) of zinc dust in 175 mL of THF was added 6.8 mL (84.6 mmol) of diiodomethane. The resulting slurry was stirred at room temperature for 30 minutes. It was cooled to 0° and 17 mL of 1.0 M TiCl<sub>4</sub> in CH<sub>2</sub>Cl<sub>2</sub> (170 mmol) was slowly added and the slurry stirred for 30 minutes. A solution of 4.0 g (17 mmol) of *trans*-3,4-diphenylcyclopentanone in 20 mL of THF was added dropwise. After 2.5 hours the reaction was diluted with ether, washed with 1 M aqueous HCl, and then saturated NaCl, and the organic phase was dried with magnesium sulfate. Concentration of the product followed by chromatography on 250 g of silica gel 60 using 10% ethyl acetate/hexanes as eluent gave 3.66 g (92%) of the pure product as a pale yellow oil. <sup>1</sup>H NMR ( CDCl<sub>3</sub>)  $\delta$  2.54–2.70 (m, 2H, ring), 2.85–2.98 (m, 2H, ring), 3.15–3.30 (m, 2H, Ar-CH), 4.92–4.98 (m, 2H, = CH<sub>2</sub>), 7.02–7.22 (m, 10H, Ar-H).

## 6.1.1.13. 3,3-Dimethyl-1,1-diphenyl-1,4-pentadiene (Alkylidenation of a Ketone with a Metallacycle **2**) (44)

To a 1-mL toluene solution of 0.050 g (0.19 mmol) of the metallacycle prepared from 1 and 3,3-dimethylcyclopropene was added 0.039 g (0.21 mmol) of benzophenone at 0°. The reaction mixture was warmed to 23°, stirred for 10 hours, and then diluted with 10 mL of petroleum ether. The resultant yellow precipitate was removed by rapid filtration through silica gel and the solvent evaporated to give 0.040 g (83%) of colorless oil. <sup>1</sup>H NMR (CCl<sub>4</sub>)  $\delta$  1.06 [s, 6H, C(CH<sub>3</sub>)<sub>2</sub>], 4.69 (dd, 1H, *J* = 12 Hz, 1.5 Hz, = CH), 4.83 (dd, 1H, *J* = 18 Hz, 1.5 Hz, = CH), 5.77 (dd, 1H, *J* = 18 Hz, 12 Hz, - CH = ), 6.03 (s, 1H, = CH - ), 7.16 (m, 10H, Ar-H).

## 7. Tabular Survey

The tables include methylenation and alkylidenation reactions found by computer searching of the literature through September 1990. Each table reflects the type of substrate (ester, aldehyde, or ketone) and the type of reaction (methylenation or alkylidenation). The tables of esters include lactones, thioesters, and silyl esters. Table entries are arranged by increasing number of carbon atoms in the substrate. Protecting groups such as silyl esters and acetals are not included in the carbon count. In some entries, data from substrates reflecting a series of structural changes are grouped together and entered by the carbon number of the parent structure.

Where available, reaction conditions are those reported in the experimental section of the literature article. However, many table entries were obtained from short communications in which experimental procedures were not included. In those cases the experimental method referred to in the table is assumed to be that which was referenced in the report. The symbol (—) indicates that no yield was reported.

In the Conditions column, the symbol >C = O indicates the point in the reaction sequence at which the carbonyl compound was added.

The following abbreviations are used in the tables:

| Bn                | benzyl                               |
|-------------------|--------------------------------------|
| Ср                | cyclopentadienyl                     |
| DMAP              | <i>p</i> -dimethylaminopyridine      |
| DMTMPS            | Dimethyl(1,1,2-trimethylpropyl)silyl |
| Et <sub>2</sub> O | diethyl ether                        |
| MEM               | methoxyethoxymethyl                  |
| MOM               | methoxymethyl                        |
| Pyr               | pyridine                             |
| SEM               | (2-trimethylsilylethoxy)methyl       |
| TBDMS             | tert-butyldimethylsilyl              |
| TBDPS             | <i>tert</i> -butyldiphenylsilyl      |
| Tebbe             | Tebbe reagent (1)                    |
| TES               | triethylsilyl                        |
| THF               | tetrahydrofuran                      |
| THP               | 2-tetrahydropyranyl                  |
| TMEDA             | N,N,N',N'-tetramethylethylenediamine |

| TMS | trimethylsilyl            |
|-----|---------------------------|
| Tol | toluene                   |
| Ts  | <i>p</i> -toluenesulfonyl |

Table I. Methylenation of Esters

View PDF

Table II. Methylenation of Ketones

View PDF

Table III. Methylenation of Aldehydes

View PDF

Table IV. Methylenation of Amides

View PDF

Table V. Alkylidenation of Esters

View PDF

Table VI. Alkylidenation of Ketones and Aldehydes

View PDF

Table VII. Alkylidenation of Amides

View PDF

Table I. Methylenation of Esters

18

| Reactant                                        | Conditions                                                                              | Product(s) and Yield(s) (%) | Refs. |
|-------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------|-------|
|                                                 | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to π, 30 min                                 | CH <sub>2</sub><br>(56)     | 15    |
|                                                 | Ср2Ті                                                                                   | " (56)                      | 15    |
| MeOOMe                                          | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to rt, 30 min                                | MeO OMe (60)                | 15    |
|                                                 | Cp <sub>2</sub> Ti                                                                      | " (60)                      | 15    |
| C4 O<br>OEt                                     | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to rt, 30 min                                | $\mathcal{OEt}^{CH_2}$ ()   | 9     |
| C <sub>3</sub> D D O<br>CF <sub>3</sub>         | TiCl <sub>4</sub> , CH <sub>2</sub> Br <sub>2</sub> , diglyme, TMEDA,<br>>C=O, π, 4.5 h | $\sim 0^{\text{CH}_2} (-)$  | 13    |
| CD <sub>2</sub> CD <sub>2</sub> CF <sub>3</sub> | TiCl4, CH2Br2, diglyme, TMEDA, >C=O, rt, 4.5 h                                          | $CD_2 \sim 0 \sim CF_3 (-)$ | 13    |

Table I. Methylenation of Esters (Continued)



Table I. Methylenation of Esters (Continued)





| Reactant                                               | Conditions                                               |                     | Product(s) and                               | nd Yield(s) (%) | Refs      |
|--------------------------------------------------------|----------------------------------------------------------|---------------------|----------------------------------------------|-----------------|-----------|
| $c_{a}$<br>$c_{15}$ O<br>$p-R^1C_6H_4$ OR <sup>2</sup> | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to rt, 30 min | p-R <sup>1</sup> Ce |                                              |                 |           |
|                                                        |                                                          | R <sup>1</sup>      | R <sup>2</sup>                               |                 |           |
|                                                        |                                                          | Н                   | Me                                           | (81)            | 12        |
|                                                        |                                                          | a                   | Me                                           | (76)            | 12        |
|                                                        |                                                          | Mic                 | Mc                                           | (93)            | 12        |
|                                                        |                                                          | MeO                 | Mc                                           | (80)            | 12        |
|                                                        |                                                          | н                   | CH <sub>2</sub> CF <sub>3</sub>              | ()              | 130       |
|                                                        |                                                          | н                   | (CH2)2CI                                     | ()              | 130       |
|                                                        |                                                          | н                   | Et                                           | ()              | 130       |
|                                                        |                                                          | н                   | i-Pr                                         | (88)            | 12        |
|                                                        |                                                          | н                   | CH <sub>2</sub> CH=CH <sub>2</sub>           | (50)            | 12        |
|                                                        |                                                          | н                   | t-Bu                                         | (57)            | 12        |
| c                                                      |                                                          | н                   | Ph                                           | (84)            | 12        |
| Ph OMe                                                 | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to π, 30 min  | Ph                  | H <sub>2</sub><br>OMe (4:<br>CH <sub>2</sub> | 5)              | 12        |
|                                                        | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to rt, 30 min | C                   | CH <sub>2</sub>                              | (85)            | 10,<br>12 |

| Table I. | Methy | lenation of | Esters ( | Continued | ) |
|----------|-------|-------------|----------|-----------|---|
|          |       |             |          |           |   |

| Reactant                              | Conditions                                                                                                             | Product(s) and Yield(s) (%) | Ref |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----|
|                                       | Cp2TiMe2, Tol, >C=O, 65°<br>12-26 h (dark)                                                                             | " (80)                      | 131 |
|                                       | 1. Cp <sub>2</sub> TiCl <sub>2</sub> , AlMe <sub>3</sub> , Tol, 3 d<br>2. >C=O, THF, -40°, 30 min;<br>0°, 1.5 h; π 1 h | " (76)                      | 116 |
|                                       | 1. Cp <sub>2</sub> TiCl <sub>2</sub> , AlMe <sub>3</sub> , Tol. 3 d<br>2. >C=O, THF, 0°; rt 45 min                     | " (67)                      | 100 |
| O<br>II                               |                                                                                                                        | CH <sub>2</sub>             |     |
| p-MeC <sub>6</sub> H <sub>4</sub> OMe | Cl <sub>2</sub> AlCH <sub>2</sub> TiCl <sub>3</sub> , THF, heat 30 min                                                 | $p-MeC_6H_4$ OMe (30)       | 52  |
| O Et                                  | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to π, 30 min                                                                | $CH_2$<br>$CH_2$<br>Et ()   | 63  |
| $\bigcap^{\circ}$                     | 1. Tebbe, Tol<br>2. >C=O, THF, Tol, DMAP, -40°<br>340°, 30 min; π, 90 min                                              | CH₂ (−)                     | 133 |



#### Table I. Methylenation of Esters (Continued)



24

Table I. Methylenation of Esters (Continued)



| Reactant                                               |                                          | Conditions                                                  | Product(s) and Yield(s) (%)       |                 |                | Refs.   |     |
|--------------------------------------------------------|------------------------------------------|-------------------------------------------------------------|-----------------------------------|-----------------|----------------|---------|-----|
| C <sub>10</sub> -<br>C <sub>18</sub><br>R <sup>1</sup> | $R^{10}$ $R^{1}$ $R^{2}$ $R^{2}$ $R^{3}$ | 1. Tebbe, Tol<br>2. >C=O, THF, Tol, Pyr, -40°<br>3. п, 12 h | RI                                |                 | R <sup>3</sup> |         | 59  |
|                                                        |                                          |                                                             | R                                 | R <sup>2</sup>  | R              |         |     |
|                                                        |                                          |                                                             | н                                 | Me              | Ph             | (—)     |     |
|                                                        |                                          |                                                             | Me                                | н               | Ph             | (72)    |     |
|                                                        |                                          |                                                             | n-Pr                              | н               | i-Pr           | ()      |     |
|                                                        |                                          |                                                             | n-Pr                              | н               | Ph             | ()      |     |
|                                                        |                                          |                                                             | Ph(CH <sub>2</sub> ) <sub>2</sub> | H               | н              | ()      |     |
|                                                        |                                          |                                                             | Ph(CH <sub>2</sub> ) <sub>2</sub> | н               | Me             | ()      |     |
|                                                        |                                          |                                                             | Ph(CH <sub>2</sub> ) <sub>2</sub> | н               | Ph             | ()      |     |
| C11                                                    | 0                                        | 1 TICL THE O                                                |                                   | C               | 'Ha            |         |     |
|                                                        | ĭ                                        | 2 TMEDA rt 10 min                                           |                                   | ĬĬ              |                | 1.1.1.1 | 1.1 |
| Ph                                                     | CE.                                      | 3 7n # 30 min                                               | Ph                                | $\sim$          | CE             | (53)    | 13  |
|                                                        | 0 613                                    | 4. >C=O, CH <sub>2</sub> Br <sub>2</sub> , rt, 3 h          |                                   | Ū               | 0.3            |         |     |
|                                                        | 0                                        | 1. TiCl4, THF, 0°                                           |                                   | CH <sub>2</sub> |                |         |     |
| Dh                                                     | U                                        | 2. TMEDA, rt, 10 min                                        | Ph                                | 1               |                |         | 12  |
|                                                        | O CF3                                    | 3. Zn, rt, 30 min                                           |                                   | 0 0             | F <sub>3</sub> |         | 13  |
| CH <sub>2</sub>                                        |                                          | 4. >C=O, CH <sub>2</sub> Br <sub>2</sub> , rt, 3 h          | CH <sub>2</sub>                   |                 | -              |         |     |

26





MeO-





I. Tebbe, Tol

2. >C=O, Tol, Pyr, -40°









30



| Reactant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Conditions                                                                         | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Refs |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| O<br>Bu-r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to rt, 30 min                           | CH <sub>2</sub><br>CH <sub>2</sub><br>Et (86)<br>Bu-t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60   |
| $ \underbrace{ \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to rt, 30 min                           | $ \underbrace{ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$ | 101  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to rt, 30 min                           | " (65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 101  |
| $OC_{12}H_{25}-n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cp <sub>2</sub> TiMe <sub>2</sub> , Tol, >C=O, 65°<br>12-26 h (dark)               | $\bigcup_{\substack{\text{OC}_{12}H_{25}-n}}^{\text{CH}_2} (65)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 131  |
| o o pr-i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1. Tebbe, Tol, C <sub>6</sub> H <sub>6</sub><br>2. >C=O, THF, Pyr<br>3. 180°, 24 h | CH <sub>2</sub> O Pr- <i>i</i> (91)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 139  |

Table I. Methylenation of Esters (Continued)


| Reactant         | Conditions                                                                                                                                   | Product(s) and Yield(s) (%)                                                                                                                                                                                              | Refs |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| c <sub>3</sub> 0 | Cp <sub>2</sub> Ti →Bu-r                                                                                                                     | CH <sub>2</sub> (90)                                                                                                                                                                                                     | 129  |
| c <sub>5</sub> O | 1. Cp <sub>2</sub> Ti Et <sub>2</sub> O, 0°<br>2. >C=O, rt, 30 min                                                                           | i-Pr (>95)                                                                                                                                                                                                               | 24   |
| R                | 1. Zn. THF, CH <sub>2</sub> Br <sub>2</sub><br>2. TiCl <sub>4</sub> , -40°; 5°, 3 d<br>3. >C=O, CH <sub>2</sub> Cl <sub>2</sub> , 20°, 1.5 h | R <sup>CH2</sup>                                                                                                                                                                                                         | 141  |
|                  |                                                                                                                                              | $\begin{array}{ll} R = n \cdot C_5 H_{11} & () \\ R = i \cdot C_3 H_7 (CH_2)_2 & () \\ R = C_6 H_{11} & () \\ R = Me_2 C = CH (CH_2)_2 & () \\ R = n \cdot C_6 H_{13} & (56) \\ R = n \cdot C_9 H_{19} & () \end{array}$ |      |
| C <sub>6</sub>   | 1. Tebbe, Tol<br>2. >C=O, -15° to rt                                                                                                         | CH <sub>2</sub><br>(65)                                                                                                                                                                                                  | 9    |
|                  | 1. Cp2Ti(Cl)CH=CHMe,<br>HA1(Pr- <i>i</i> )2, Tol, -40°<br>2. >C=O                                                                            | " (50)                                                                                                                                                                                                                   | 30   |

Table II. Methylenation of Ketones

Table II. Methylenation of Ketones (Continued)



| $ \begin{array}{cccc}  & & & & & & & & & & & & & & & & & \\  & & & &$                                                                                                                                                                                                                                                                                                      | Reactant | Conditions                                                                                                                                                   | Product(s) and Yield(s) (%) | Refs |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------|
| $\begin{array}{ccccc} & & & & & & & & & & & \\ & & & & & & & $                                                                                                                                                                                                                                                                                                             |          | 1. Zn. THF, CH <sub>2</sub> Br <sub>2</sub><br>2. TiCl <sub>4</sub> , -40°; 5°, 3 d<br>3. >C=O, CH <sub>2</sub> Cl <sub>2</sub> , 20°, 1.5 h                 | CH <sub>2</sub> ()          | 145  |
| $\begin{array}{c} 0 \\ Ph \end{array} \qquad 1. \text{ Tebbe, Tol} \\ 2. > C=0, \text{ THF, 0°} \\ 3. 0° \text{ to r, 30 min} \end{array} \qquad Ph \qquad (88-93) \\ Cp_2 \text{Ti} \longrightarrow -\text{Bu-}i \qquad " (94) \\ 1. CH_2 l_2, 2n, \text{ THF, 30 min} \\ 2. \text{TiCl}_4, CH_2 Cl_2, 0°; 25°, 30 min \\ 3. > C=0, \text{ THF, 25°, 30 min} \end{array}$ | Ph CF3   | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to rt, 30 min                                                                                                     | $Ph CF_3$ (50)              | 12   |
| $Cp_{2}Ti -Bu-t $ (94)<br>1. CH <sub>2</sub> l <sub>2</sub> , Zn, THF, 30 min<br>2. TiCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 0°; 25°, 30 min<br>3. >C=O, THF, 25°, 30 min<br>1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>CH <sub>2</sub>                                                                                                                             | Ph       | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to rt, 30 min                                                                                                     | Ph (88-93)                  | 12,2 |
| 1. CH <sub>2</sub> I <sub>2</sub> , Zn, THF, 30 min<br>2. TiCl <sub>4</sub> , CH <sub>2</sub> CI <sub>2</sub> , 0°; 25°, 30 min<br>3. >C=O, THF, 25°, 30 min<br>1. Tebbe, Tol<br>2. >C=O. THF. 0°<br>(90)                                                                                                                                                                  |          | Cp <sub>2</sub> Ti Bu-t                                                                                                                                      | " (94)                      | 129  |
| $\begin{array}{c} O \\ 1. \text{ Tebbe, Tol} \\ 2 > C=O. \text{ THE, } O^{\circ} \end{array}$                                                                                                                                                                                                                                                                              |          | 1. CH <sub>2</sub> I <sub>2</sub> , Zn, THF, 30 min<br>2. TiCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 0°; 25°, 30 min<br>3. >C=O, THF, 25°, 30 min | " (90)                      | 79   |
| 3. 0° to rt, 30 min (97)                                                                                                                                                                                                                                                                                                                                                   | J.       | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to rt, 30 min                                                                                                     | (97)                        | 23   |

36





Table II. Methylenation of Ketones (Continued)



| Table II. | Methy | lenation | of K | etones | (Continued) |  |
|-----------|-------|----------|------|--------|-------------|--|
|-----------|-------|----------|------|--------|-------------|--|

| Reactant | Conditions                                                                                                                                                      | Product(s) and Yield(s) (%)       | Refs |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------|
|          | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to rt, 30 min                                                                                                        | " (40)                            | 12   |
|          | Cp <sub>2</sub> TiMe <sub>2</sub> , Tol, >C=O,<br>65°, 12-26 h (dark)                                                                                           | " (60)                            | 131  |
| Ph       | 1. CH <sub>2</sub> I <sub>2</sub> , Zn, THF, 30 min<br>2. TiCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 0°; 25°, 30 min<br>3. >C=O, THF, 25°, 15-60 min | Ph (78)                           | 79   |
| Ph-      | $Cp_2TiCH_2ZnX_2, Tol X = I, Cl$                                                                                                                                | Ph-CH <sub>2</sub> (>80)          | 49   |
| OTBDMS   | 1. Zn. THF, CH <sub>2</sub> Br <sub>2</sub><br>2. TiCl <sub>4</sub> , -40°; 5°, 3 d<br>3. >C=O, CH <sub>2</sub> Cl <sub>2</sub> , 20°, 1.5 h                    | CH <sub>2</sub><br>OTBDMS (95)    | 150  |
| OTBDMS   | 1. Zn. THF, CH <sub>2</sub> Br <sub>2</sub><br>2. TiCl <sub>4</sub> , -40°; 5°, 3 d<br>3. >C=O, CH <sub>2</sub> Cl <sub>2</sub> , 20°, 1.5 h                    | CH <sub>2</sub><br>(99)<br>OTBDMS | 124  |

Table II. Methylenation of Ketones (Continued)







#### Table II. Methylenation of Ketones (Continued)

| Reactant | Conditions                                                                                                                                      | Product(s) and Yield(s) (%)                | Refs. |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------|
| CO2Et    | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to π, 30 min                                                                                         | CH <sub>2</sub><br>CO <sub>2</sub> Et (67) | 12    |
| X-0      | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to π, 30 min                                                                                         | CH2 (87)                                   | 24    |
|          | 1. Cp <sub>2</sub> Ti Et <sub>2</sub> O, 0°<br>2. >C=O, rt, 30 min                                                                              | " (70)                                     | 24    |
|          | 1. CH <sub>2</sub> Br <sub>2</sub> , Zn, THF<br>2. TiCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 25°, 15 min<br>3. >C=O, THF, 25°, 12 h | " (73)                                     | 159   |
| A Fo     | 1. $Cp_2Ti$ $Et_2O, 0^{\circ}$<br>2. >C=O, rt, 30 min                                                                                           | (20)                                       | 24    |
|          | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to π, 30 min                                                                                         | " (16)                                     | 24,12 |

| Reactant | Conditions                                                                                                                                                | Product(s) and Yield(s) (%) | Refs. |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------|
|          | 1. CH <sub>2</sub> Br <sub>2</sub> , Zn, THF<br>2. TiCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 25°, 15 min<br>3. >C=O, THF, 25°, 40 h           | " (92)                      | 11    |
|          | 1. CH <sub>2</sub> I <sub>2</sub> , Zn, THF, 30 min<br>2. TiCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 0°; 25°, 30 min<br>3. >C=O, THF, 25°, 1 h | " (64)                      | 79    |
| MeO2C    | 1. CH <sub>2</sub> Br <sub>2</sub> , Zn, THF<br>2. TiCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 25°, 15 min<br>3. >C=O, THF, 25°, 4 h            | MeO <sub>2</sub> C (58)     | 80    |
| i-Pr     | 1. Zn. THF, CH2Br2<br>2. TiCl4, -40°; 5°, 3 d<br>3. >C=O, CH2Cl2, 20°, 1.5 h                                                                              | i-Pr (89)                   | 28    |
| Bu-t     | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to rt, 30 min                                                                                                  | Bu- <i>t</i> (96)           | 23    |

| Table II. | Methy | lenation of | Ketones | (Continued) | ) |
|-----------|-------|-------------|---------|-------------|---|
|           |       |             |         |             |   |

| Reactant                           | Conditions                                                                                                                                      | Product(s) and Yield(s) (%)                           | Refs. |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------|
| r-Bu O                             | Zn, CH <sub>2</sub> Br <sub>2</sub> , Cp <sub>2</sub> TiCl <sub>2</sub><br>>C=O, THF, 3 h                                                       | <i>t</i> -Bu (17)                                     | 160   |
|                                    | 1. Cp <sub>2</sub> TiCl <sub>2</sub> , AlMe <sub>3</sub> , Tol<br>2. >C=O, -40°                                                                 | " (75)                                                | 117   |
| (CH <sub>2</sub> ) <sub>3</sub> =0 | 1. CH <sub>2</sub> Br <sub>2</sub> , Zn, THF<br>2. TiCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 25°, 15 min<br>3. >C=O, THF, 25°, 12 h | (CH <sub>2</sub> ) <sub>3</sub> =CH <sub>2</sub> (70) | 161   |
| C <sub>11</sub><br>Ph              | 1. Tebbe, THF, -40°<br>2. >C=O, -40°, 30 min; π, 1.5 h                                                                                          | Ph (89)                                               | 24    |
|                                    | 1.Cp <sub>2</sub> Ti Et <sub>2</sub> O, 0°<br>2. >C=O, rt, 30 min                                                                               | " (98)                                                | 24    |
| MeO<br>MeO<br>MeO                  | 1. Cp <sub>2</sub> TiCl <sub>2</sub> , AlMe <sub>3</sub> , Tol, 3 d<br>2. >C=O, THF, -40°, 30 min;<br>0°, 1.5 h; π, 1 h                         | MeO<br>MeO<br>MeO (93)                                | 162   |



### Table II. Methylenation of Ketones (Continued)

| Reactant                                                       | Conditions                                                                                                                                                 | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Refs. |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| HC <sub>≤C</sub><br>MeO <sub>2</sub> C 0<br>MeO <sub>2</sub> C | 1. Zn, THF, <sup>13</sup> CH <sub>2</sub> Br <sub>2</sub><br>2. TiCl <sub>4</sub> , -40°; 5°, 3 d<br>3. >C=O, CH <sub>2</sub> Cl <sub>2</sub> , 20°, 1.5 h | $HC \underset{C \subseteq C}{\overset{MeO_2C}{\underset{MeO_2C}{\overset{13}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{MEO$ | 165   |
|                                                                | 1. Zn, THF, CD2Br2,<br>2. TiCl4, -40°; 5°, 3 d<br>3. >C=O, CH2Cl2, 20°, 1.5 h                                                                              | $HC \underset{MeO_2C}{\overset{MeO_2C}{\underset{MeO_2C}{\overset{CD_2}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\underset{MeO_2C}{\overset{(-)}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MEO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MeO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{\underset{MEO_2C}{MEO$          | 165   |
| OEt O                                                          | 1. Zn. THF, CH <sub>2</sub> Br <sub>2</sub><br>2. TiCl <sub>4</sub> , -40°; 5°, 3 d<br>3. >C=O, CH <sub>2</sub> Cl <sub>2</sub> , 20°, 1.5 h               | (43)<br>OEt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 166   |
| но-0                                                           | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to rt, 30 min                                                                                                   | HO-CH <sub>2</sub> (61)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 167   |
| FK.                                                            | 1. CH <sub>2</sub> Br <sub>2</sub> , Zn, THF<br>2. TiCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 25°, 15 min<br>3. >C=O, THF, 25°, 12 h            | CH2 (57-62)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 156   |

48



### Table II. Methylenation of Ketones (Continued)





| Table II. | Methy | vlenation | of Ketones | (Continued) |
|-----------|-------|-----------|------------|-------------|
|           |       |           |            |             |

| Reactant                                               | Conditions                                                           | Product(s) and Yield(s) (%)                            | Refs |
|--------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------|------|
|                                                        |                                                                      | CH <sub>2</sub>                                        |      |
| $\sim \Lambda$                                         | 1. Zn. THF, CH2Br2                                                   |                                                        | 174  |
| CI- X- CI                                              | 2. TiCl <sub>4</sub> , -40°; 5°, 3 d                                 |                                                        |      |
| ci <sup>-</sup> ci                                     | 3. >C=O, CH <sub>2</sub> Cl <sub>2</sub> , 20°, 1.5 h                | CI CI                                                  |      |
| $\sim$                                                 | 1. CH212, Zn, THF, 30 min                                            | $\sim$                                                 |      |
|                                                        | 2. TiCl4, CH2Cl2, 0°; 25°, 30 min                                    | $( ) = CH_2 (90)$                                      | 79   |
| $\sim$                                                 | 3. >C=O, THF, 25°, 20 min                                            |                                                        |      |
|                                                        | 1. CH <sub>2</sub> Br <sub>2</sub> , Zn, THF                         |                                                        |      |
|                                                        | 2. TiCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 25°, 15 min | (80)                                                   | 11   |
|                                                        | 3. >C=O, THF, 25°, 12 h                                              |                                                        |      |
|                                                        | Cp2TiMe2, Tol, >C=O,                                                 | "                                                      |      |
|                                                        | 65°, 12-26 h (dark)                                                  | (83)                                                   | 131  |
| 1 0                                                    | 1. CH <sub>2</sub> Br <sub>2</sub> , Zn, THF                         | CH <sub>2</sub>                                        |      |
|                                                        | 2. TiCl4, CH2Cl2, 25°, 15 min                                        |                                                        | 90   |
|                                                        | 3. >C=O, THF, 25°, 12 h                                              | ⇒                                                      |      |
| Q                                                      | 1. CH <sub>2</sub> Br <sub>2</sub> , Zn, THF                         | CH <sub>2</sub>                                        |      |
| L .                                                    | 2. TiCl4, CH2Cl2, 25°, 15 min                                        | (89)                                                   | 11   |
| <i>n</i> -Pr C <sub>8</sub> H <sub>17</sub> - <i>n</i> | 3. >C=O, THF, 25°, 12 h                                              | <i>n</i> -Pr C <sub>8</sub> H <sub>17</sub> - <i>n</i> |      |
|                                                        | 1. CH <sub>2</sub> I <sub>2</sub> , Zn, THF                          |                                                        |      |
|                                                        | 2. TiCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 25°, 15 min | " (53)                                                 | 51   |
|                                                        | 3. >C=O, THF, 25°, 12 h                                              | x-/                                                    |      |
|                                                        |                                                                      |                                                        |      |

| Table II. | Methylenation of Ketones (Continued) |  |
|-----------|--------------------------------------|--|

| Reactant                    | Conditions                                                                                                                                                         | Product(s) and Yield(s) (%)        | Refs       |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------|
|                             | 1. CH <sub>2</sub> I <sub>2</sub> , Zn, TiCl <sub>4</sub> , THF<br>2. >C=O, CH <sub>2</sub> Cl <sub>2</sub> , Ti(NEt <sub>2</sub> ) <sub>4</sub><br>3. 25°, 30 min | " (95)                             | 51         |
| C12-                        | 1. CH <sub>2</sub> I <sub>2</sub> , Zn, THF, 30 min<br>2. TiCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 0°; 25°, 30 min<br>3. >C=O, THF, 25°, 15-60 min    | " (86)                             | 79         |
| $C_{13}$ O<br>$CO_2Me$<br>R | 1. Zn. THF, CH <sub>2</sub> Br <sub>2</sub><br>2. TiCl <sub>4</sub> , -40°; 5°, 3 d<br>3. >C=O, CH <sub>2</sub> Cl <sub>2</sub> , 20°, 1.5 h                       | R = H (100) $R = Me (100)$         | 175        |
|                             | Cl <sub>2</sub> AlCH <sub>2</sub> TiCl <sub>3</sub> , THF,<br>heat 30 min                                                                                          | (82)<br>CH <sub>2</sub>            | 52         |
| Ph Ph                       | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to rt, 30 min                                                                                                           | CH <sub>2</sub> (97)<br>Ph Ph (97) | 12, :<br>9 |
|                             | Cl <sub>2</sub> AlCH <sub>2</sub> TiCl <sub>3</sub> , THF,<br>heat 30 min                                                                                          | " (100)                            | 52         |

| Table II. | Methylenation of Keton | nes (Continued) |
|-----------|------------------------|-----------------|

| Reactant      | Conditions                                                                                                                                      | Product(s) and Yield(s) (%) | Ref       |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------|
|               | $Cp_2TiCH_2ZnX_2, Tol X = I, Cl$                                                                                                                | " (100)                     | 49        |
|               | (Cp <sub>2</sub> TiBrCH <sub>2</sub> ) <sub>2</sub> Mg, THF<br>5°, 30 min                                                                       | " (80)                      | 29        |
|               | Cp2TiMe2, Tol, >C=O,<br>65°, 12-26 h (dark)                                                                                                     | " (90)                      | 131       |
| $\mathcal{O}$ | 1. CH <sub>2</sub> Br <sub>2</sub> , Zn, THF<br>2. TiCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 25°, 15 min<br>3. >C=O, THF, 25°, 12 h | (98)                        | 176       |
|               | 1. Zn. THF, CH <sub>2</sub> Br <sub>2</sub><br>2. TiCl <sub>4</sub> , -40°; 5°, 3 d<br>3. >C=O, CH <sub>2</sub> Cl <sub>2</sub> , 20°, 1.5 h    | HO $CO_2Me$ (90)            | 27,<br>98 |
| Ph            | 1. Zn. THF, CH <sub>2</sub> Br <sub>2</sub><br>2. TiCl <sub>4</sub> , -40°; 5°, 3 d<br>3. >C=O, CH <sub>2</sub> Cl <sub>2</sub> , 20°, 1.5 h    | CH <sub>2</sub><br>Ph (90)  | 121       |



#### Table II. Methylenation of Ketones (Continued)



56





| Table ] | П. | Methy    | lenation | of | Ketones | (Continued)  |  |
|---------|----|----------|----------|----|---------|--------------|--|
| a more  |    | 1. ACHAY |          | •• |         | (Contractor) |  |









# Table II. Methylenation of Ketones (Continued)



62







Table II. Methylenation of Ketones (Continued)







Table III. Methylenation of Aldehydes

| Reactant                                                          | Conditions                                                                                                                                                   | Product(s) and Yield(s) (%)         | Refs |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------|
| Cs O<br><i>t</i> -Bu H                                            | Cp <sub>2</sub> Ti Bu-t                                                                                                                                      | CH <sub>2</sub><br>t-Bu H (100)     | 129  |
| C7<br>Ph H                                                        | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to rt, 30 min                                                                                                     | Ph H ()                             | 9    |
| C.                                                                | Ср2Ті —Ви-г                                                                                                                                                  | " (92)                              | 129  |
| MeO <sub>2</sub> C                                                | 1. Zn. THF, CH <sub>2</sub> Br <sub>2</sub><br>2. TiCl <sub>4</sub> , -40°; 5°, 3 d<br>3. >C=O, CH <sub>2</sub> Cl <sub>2</sub> , 20°, 1.5 h                 | $MeO_2C \xrightarrow{CH_2} H $ (40) | 95   |
| c,<br>Ph H                                                        | 1. CH <sub>2</sub> I <sub>2</sub> , Zn, THF, 30 min<br>2. TiCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 0°; 25°, 30 min<br>3. >C=O, THF, 25°, 30 min | Ph (52)                             | 79   |
| C <sub>10</sub><br><i>n</i> -C <sub>10</sub> H <sub>21</sub><br>H | Cp2TiMc2, Tol, >C=O,<br>65°, 12-26 h (dark)                                                                                                                  | $n-C_{10}H_{21}$ H (43)             | 131  |

| Table III. | Methylenatio | on of Aldehydes | (Continued) |
|------------|--------------|-----------------|-------------|
| Table III. | wichtyichath | on of Aldenyues | (Commaeu,   |

| Reactant                                                                       | Conditions                                                                                                                                      | Product(s) and Yield(s) (%)                                              | Refs      |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------|
| $c_{11}$ $O$ $n-C_9H_{19}$ $H$                                                 | Cp2TiMe2, Tol, >C=O,<br>65°, 12-26 h (dark)                                                                                                     | $n-C_9H_{19}$ $H$ (62)                                                   | 131       |
| $MeO \rightarrow O \rightarrow H$<br>MeO $\rightarrow O_2CCH_2P(OEt)_2$<br>OMe | 1. CH <sub>2</sub> Br <sub>2</sub> , Zn, THF<br>2. TiCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 25°, 15 min<br>3. >C=O, THF, 25°, 12 h | $MeO \rightarrow O \rightarrow H \\ MeO \rightarrow O_2CCH_2P(OEt)_2 (-$ | -) 199    |
| С <sub>12</sub><br><i>n</i> -С <sub>11</sub> Н <sub>23</sub> Н                 | 1. CH <sub>2</sub> Br <sub>2</sub> , Zn, THF<br>2. TiCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 25°, 15 min<br>3. >C=O, THF, 0°, 4 h   | n-C <sub>11</sub> H <sub>23</sub> H (55)                                 | 11        |
|                                                                                | 1. CH <sub>2</sub> Br <sub>2</sub> , Zn, THF<br>2. TiCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 25°, 15 min<br>3. >C=O, THF, 25°, 12 h | " (10)                                                                   | 51        |
|                                                                                | 1. Zr. THF, CH <sub>2</sub> Br <sub>2</sub><br>2. TiCl4, -40°; 5°, 3 d<br>3. >C=O, CH <sub>2</sub> Cl <sub>2</sub> , 20°, 1.5 h                 | " (74)                                                                   | 27        |
|                                                                                | 1. CH <sub>2</sub> I <sub>2</sub> , Zn, THF, 30 min<br>2. TiCl4, CH <sub>2</sub> Cl <sub>2</sub> , 0°; 25°, 30 min<br>3. >C=O, THF, 25°, 30 min | " (78)                                                                   | 51,<br>79 |

| Reactant                                                              | Conditions                                                                                                                                          | Product(s) and Yield(s) (%)                                 | Refs |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------|
|                                                                       | 1. CH <sub>2</sub> J <sub>2</sub> , Zn, THF, 30 min<br>2. Ti(OPr-i)4, CH <sub>2</sub> Cl <sub>2</sub> , 0°;<br>25°, 30 min<br>3. C=O. THF, 25°, 5 h | " (86)                                                      | 51   |
| $EtO_2C \xrightarrow{O}_{Et} O \xrightarrow{O}_{Et} F$                | I. Zn. THF, CH <sub>2</sub> Br <sub>2</sub><br>2. TiCl <sub>4</sub> , -40°; 5°, 3 d<br>3. >C=O, CH <sub>2</sub> Cl <sub>2</sub> , 20°, 1.5 h        | $EtO_2C \xrightarrow{O}_{Et} O \xrightarrow{CH_2}_{H} (35)$ | 94   |
| $\begin{array}{c} C_{15} \\ t - BuCO_2 \\ \\ O_2 CBu - t \end{array}$ | 1. Tebbe, Tol-C <sub>6</sub> H <sub>6</sub><br>2. >C=O, THF, Tol, Pyr, -40°;<br>340°, 30 min; rt, 90 min                                            | $t-BuCO_2$<br>H<br>$O_2CBu-t$<br>(48)                       | 89   |
| MeO<br>CN<br>CH=O                                                     | 1. CH <sub>2</sub> Br <sub>2</sub> , Zn, THF<br>2. TiCl4, CH <sub>2</sub> Cl <sub>2</sub> , 25°, 15 min<br>3. >C=O, THF, 25°, 12 h                  | MeO<br>CN<br>CH=CH <sub>2</sub> ()                          | 62   |

### Table III. Methylenation of Aldehydes (Continued)

Table III. Methylenation of Aldehydes (Continued)



# Table IV. Methylenation of Amides

| Reactant | Conditions                                               | Product(s) and Yield(s) (%)     | Refs |
|----------|----------------------------------------------------------|---------------------------------|------|
|          | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to rt, 30 min | CH <sub>2</sub> ()              | 12   |
|          | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to rt, 30 min | (56)                            | 201  |
| N(Me)Ph  | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to rt, 30 min | CH <sub>2</sub> (97)<br>N(Me)Ph | 12   |
|          | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to rt, 30 min | (50)                            | 201  |
|          | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to rt, 30 min | (74)                            | 201  |

# Table IV. Methylenation of Amides (Continued)

| Reactant                                                          | Conditions                                               | Product(s) and Yield(s) (%)                              | Refs |
|-------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------|
|                                                                   | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to rt, 30 min | Ph (80)                                                  | 12   |
|                                                                   | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to rt, 30 min | Ph $N$ (67)                                              | 12   |
| Ph                                                                | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to rt, 30 min | Ph (76)                                                  | 12   |
| $ \begin{bmatrix} N \\ N$ | 1. Tebbe, Tol<br>2. >C=O, THF, 0°<br>3. 0° to rt, 30 min | $ \begin{array}{c}                                     $ | 201  |

Table IV. Methylenation of Amides (Continued)



Table V. Alkylidenation of Esters

| Reactant                          | Conditions                                                                                                                                                                             | Pro                                                                                                       | oduct(s) an                           | nd Yield(s) (%)   | Refs |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------|------|
| $C_2 R^1 OSiR^2$                  | 1. TiCl₄, CH₂Cl₂, THF, 0°<br>2. TMEDA, 25°, 10 min<br>3. Zn, 25°, 30 min<br>4. >C=O, R <sup>3</sup> CHBr₂, THF,<br>25°, 1.5-2 h                                                        | $ \begin{array}{c} CH_2\\ R^1 & OSiR^2\\ \hline R^1 & R^2\\ \hline Me & Me_2B\\ Me & (i-Pr) \end{array} $ | 2<br>R <sup>3</sup><br>u-r Bn<br>8 Bn | -<br>(78)<br>(91) | 19   |
| R <sup>1</sup> OSiMe <sub>3</sub> | 1. TiCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , THF, 0°<br>2. TMEDA, 25°, 10 min<br>3. Zn, 25°, 30 min<br>4. >C=O, R <sup>2</sup> CHBr <sub>2</sub> , THF,<br>25° $\pm$ 5.2 b | R <sup>1</sup><br>CHR <sup>2</sup><br>OSiM                                                                | R <sup>2</sup>                        |                   | 19   |
|                                   | 25°, 1.5-2 h                                                                                                                                                                           | Me                                                                                                        | Bn                                    | (79)              |      |
|                                   |                                                                                                                                                                                        | n-C5H11                                                                                                   | Bn                                    | (76)              |      |
|                                   |                                                                                                                                                                                        | Ph                                                                                                        | Mc                                    | (90)              |      |
|                                   |                                                                                                                                                                                        | Ph                                                                                                        | n-Bu                                  | (84)              |      |
|                                   |                                                                                                                                                                                        | Ph                                                                                                        | Bn                                    | (87)              |      |
|                                   |                                                                                                                                                                                        | Ph                                                                                                        | C6H11                                 | (74)              |      |
|                                   |                                                                                                                                                                                        | C6H11                                                                                                     | Me                                    | (80)              |      |
|                                   |                                                                                                                                                                                        | C6H11                                                                                                     | n-Bu                                  | (78)              |      |
|                                   |                                                                                                                                                                                        | C6H11                                                                                                     | Bn                                    | (84)              |      |
|                                   |                                                                                                                                                                                        | PhCH=CH                                                                                                   | Me                                    | (65)              |      |
|                                   |                                                                                                                                                                                        | PhCH=CH                                                                                                   | n-Bu                                  | (79)              |      |
|                                   |                                                                                                                                                                                        | PhCH=CH                                                                                                   | Bn                                    | (79)              |      |
|                                   |                                                                                                                                                                                        | PhCH <sub>2</sub> CH <sub>2</sub>                                                                         | n-Bu                                  | (80)              |      |
|                                   |                                                                                                                                                                                        | n-C9H19                                                                                                   | Me                                    | (77)              |      |
|                                   |                                                                                                                                                                                        | n-C9H19                                                                                                   | n-Bu                                  | (80)              |      |
|                                   |                                                                                                                                                                                        | n-C9H19                                                                                                   | Bn                                    | (66)              |      |
|                                   |                                                                                                                                                                                        | n-C9H19                                                                                                   | C6H11                                 | (68)              |      |

| Table V. | Alkylidenation | of Esters | (Continued) |
|----------|----------------|-----------|-------------|
|----------|----------------|-----------|-------------|

| Reactant                            | Conditions Pro                                                                                                                                             |                                | Product(s) and Yield(s) (%) |                | Refs |  |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------|----------------|------|--|
| C S S                               | 1. TiCl4, CH <sub>2</sub> Cl <sub>2</sub> , THF, 0°<br>2. TMEDA, 25°, 10 min<br>3. Zn, 25°, 30 min<br>4. >C=O, RCHBr <sub>2</sub> , THF,<br>25°, 0.3-1.3 h |                                |                             |                | 18   |  |
| $C_{18}$ O<br>$R^1$ OR <sup>2</sup> | 1. TiCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , THF, 0°<br>2. TMEDA, 25°, 10 min<br>3. Zn, 25°, 30 min                                            | R <sup>1</sup> OR <sup>2</sup> |                             |                | 14   |  |
|                                     | 4. >C=O, R <sup>3</sup> CHBr <sub>2</sub> , THF,                                                                                                           | R <sup>1</sup>                 | R <sup>2</sup>              | R <sup>3</sup> |      |  |
|                                     | 25°, 2-3 h                                                                                                                                                 | i-Pr                           | Me                          | n-CsH11        | (89) |  |
|                                     |                                                                                                                                                            | n-Bu                           | Mc                          | i-Bu           | (95) |  |
|                                     |                                                                                                                                                            | n-Bu                           | Mc                          | C6H11          | (69) |  |
|                                     |                                                                                                                                                            | i-Bu                           | Mc                          | n-C5H11        | (88) |  |
|                                     |                                                                                                                                                            | n-Bu                           | Mc                          | n-CsH11        | (96) |  |
|                                     |                                                                                                                                                            | MeCH=CH                        | Et                          | c-C5H11        | (90) |  |
|                                     |                                                                                                                                                            | n-Bu                           | CH2=CHCH2                   | c-CsH11        | (52) |  |
|                                     |                                                                                                                                                            | Ph                             | Mc                          | Mc             | (86) |  |
|                                     |                                                                                                                                                            | Ph                             | Mc                          | n-CsH11        | (89) |  |
|                                     |                                                                                                                                                            | Ph                             | Me                          | i-Bu           | (79) |  |
|                                     |                                                                                                                                                            | Ph                             | Me                          | C6H11          | (61) |  |
|                                     |                                                                                                                                                            | Ph                             | i-Pr                        | Mic            | (88) |  |
|                                     |                                                                                                                                                            | Me                             | n-C8H17                     | Me             | (68) |  |
|                                     |                                                                                                                                                            | Ph                             | t-Bu                        | Mic            | (81) |  |
|                                     |                                                                                                                                                            | n-Pr                           | n-PrCH=CHCH2                | n-C5H11        | (85) |  |
|                                     |                                                                                                                                                            | CH2=CHC8H17-M                  | Me                          | Mc             | (53) |  |
|                                     |                                                                                                                                                            | Ph                             | Ph                          | Me             | (76) |  |
|                                     |                                                                                                                                                            | Ph                             | Ph                          | H              | (16) |  |
|                                     |                                                                                                                                                            | n-C11H23                       | Mic                         | Mic            | (75) |  |
|                                     |                                                                                                                                                            | n-C8H17CH=CHC7H15-n            | Mc                          | Mic            | (70) |  |

# Table V. Alkylidenation of Esters (Continued)

| Reactant                                                                                         | Conditions                                                                                                                                                                                                                                                                                                                                                                        | Product(s) and Yield(s) (%)                                                                           | Refs     |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------|
| $\frac{C_6}{THPO} \xrightarrow{O} OMe$ $C_6 \xrightarrow{C_{14}} OMe$ $R^1 \xrightarrow{O} OR^2$ | <ol> <li>TiCl4, THF, 0°</li> <li>TMEDA, rt, 10 min</li> <li>Zn, rt, 30 min</li> <li>&gt;C=O, THPO(CH<sub>2</sub>)<sub>3</sub>CHBr<sub>2</sub>,<br/>rt, 4 h</li> <li>TiCl4, CH<sub>2</sub>Cl<sub>2</sub>, THF, 0°</li> <li>TMEDA, 25°, 15 min</li> <li>Zn, 25°, 30 min</li> <li>&gt;C=O, Me<sub>3</sub>SiCHBr<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>,<br/>25°, 3-5 h</li> </ol> | $\begin{array}{c} THPO \\ THPO \\ THPO \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $ | 50<br>26 |
| C <sub>8</sub> O<br>Ph OMe                                                                       | 1. Cp <sub>2</sub> TiClCH=CHMe, HAl(Bu- <i>i</i> ) <sub>2</sub> ,<br>Tol, -40° to π, 30 min<br>2. >C=O                                                                                                                                                                                                                                                                            | Ph OMe ()                                                                                             | 30       |
|                                                                                                  | <ol> <li>TiCl<sub>4</sub>, CH<sub>2</sub>Cl<sub>2</sub>, THF, 0°</li> <li>TMEDA, 25°, 10 min</li> <li>Zn, 25°, 30 min</li> <li>&gt;C=O, n-C<sub>5</sub>H<sub>11</sub>CHBr<sub>2</sub>, THF, 25°, 2 h</li> </ol>                                                                                                                                                                   | C <sub>5</sub> H <sub>11</sub> - <i>n</i> (58)                                                        | 14       |

76

T



| Table | V. | Alkylidenation of | Esters ( | Continued | ) |
|-------|----|-------------------|----------|-----------|---|
|       |    |                   |          |           |   |

| Conditions Product(s) and Yield(s) (%)                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Refs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. TiCl4, CH <sub>2</sub> Cl <sub>2</sub> , THF, 0°<br>2. TMEDA, 25°, 15 min<br>3. Zn, 25°, 30 min<br>4. >C=O, Me <sub>3</sub> SiCHBr <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>25°, 2-5 h | R <sup>1</sup><br>Si<br>R <sup>1</sup><br>Ph<br><i>n</i> -C <sub>8</sub> H <sub>17</sub><br>C <sub>6</sub> H <sub>11</sub>                                                                                                                                                                                                                                                                          | Me <sub>3</sub><br>R <sup>2</sup><br><u>R<sup>2</sup></u><br>Me (8<br>Me (8<br>Me (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 64)<br>80)<br>88)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1. TiCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , THF, 0°<br>2. TMEDA, 25°, 10 min<br>3. Zn, 25°, 30 min<br>4. >C=O, R <sup>3</sup> CHBr <sub>2</sub> , THF,                                  |                                                                                                                                                                                                                                                                                                                                                                                                     | R <sup>2</sup><br>R <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | p <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25°, 0.5-5 n                                                                                                                                                                                         | Ph<br>Ph<br>C <sub>6</sub> H <sub>11</sub><br>C <sub>6</sub> H <sub>11</sub><br>C <sub>6</sub> H <sub>11</sub><br><i>n</i> -C <sub>8</sub> H <sub>17</sub><br><i>n</i> -C <sub>8</sub> H <sub>17</sub><br><i>n</i> -C <sub>8</sub> H <sub>17</sub><br><i>p</i> h                                                                                                                                    | Me<br>Me<br>Me<br>Me<br>Me<br>Me<br>Me<br>Me<br>Me<br>Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Me$ $n-Bu$ $Bn$ $Me$ $Bn$ $C_6H_{11}$ $Me$ $C_6H_{11}$ $Bn$ $Me$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>(77)</li> <li>(75)</li> <li>(80)</li> <li>(88)</li> <li>(95)</li> <li>(97)</li> <li>(94)</li> <li>(95)</li> <li>(87)</li> <li>(56)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                      | Conditions<br>1. TiCl4, CH <sub>2</sub> Cl <sub>2</sub> , THF, 0°<br>2. TMEDA, 25°, 15 min<br>3. Zn, 25°, 30 min<br>4. >C=O, Me <sub>3</sub> SiCHBr <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 25°, 2-5 h<br>1. TiCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , THF, 0°<br>2. TMEDA, 25°, 10 min<br>3. Zn, 25°, 30 min<br>4. >C=O, R <sup>3</sup> CHBr <sub>2</sub> , THF, 25°, 0.5-5 h | Conditions         1. TiCl4, CH <sub>2</sub> Cl <sub>2</sub> , THF, 0°         2. TMEDA, 25°, 15 min         3. Zn, 25°, 30 min         4. >C=0, Me <sub>3</sub> SiCHBr <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,         25°, 2-5 h         1. TiCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , THF, 0°         2. TMEDA, 25°, 10 min         3. Zn, 25°, 30 min         4. >C=0, R <sup>3</sup> CHBr <sub>2</sub> , THF, 0°         2. TMEDA, 25°, 10 min         3. Zn, 25°, 30 min         4. >C=0, R <sup>3</sup> CHBr <sub>2</sub> , THF, 25°, 0.5-5 h         R <sup>1</sup> Ph         Ph      < | Conditions       Product         1. TiCl4, CH <sub>2</sub> Cl <sub>2</sub> , THF, 0°       2. TMEDA, 25°, 15 min         3. Zn, 25°, 30 min       4. >C=O, Me <sub>3</sub> SiCHBr <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 25°, 2-5 h         1. TiCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , THF, 0° $R^1$ 1. TiCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , THF, 0° $R^1$ 2. TMEDA, 25°, 10 min $R^2$ 3. Zn, 25°, 30 min $R^1$ 4. >C=O, R <sup>3</sup> CHBr <sub>2</sub> , THF, 0° $R^1$ 2. TMEDA, 25°, 10 min $R^1$ 3. Zn, 25°, 30 min $R^1$ 4. >C=O, R <sup>3</sup> CHBr <sub>2</sub> , THF, 25°, 0.5-5 h $R^1$ $R^1$ $R^2$ Ph       Me         Ph       Me </td <td>Conditions       Product(s) and Yield         1. TiCl4, CH2Cl2, THF, 0°       2. TMEDA, 25°, 15 min         3. Zn, 25°, 30 min       4. &gt;C=O, Me3SiCHBr2, CH2Cl2, 25°, 2-5 h         1. TiCl4, CH2Cl2, THF, 0°       <math>R^1</math>         2. TMEDA, 25°, 10 min       <math>R^1</math>         3. Zn, 25°, 30 min       64)         4. &gt;C=O, R<sup>3</sup>CHBr2, THF, 0°       <math>R^1</math>         2. TMEDA, 25°, 10 min       <math>R^1</math>         3. Zn, 25°, 30 min       <math>R^1</math>         4. &gt;C=O, R<sup>3</sup>CHBr2, THF, 25°, 0.5-5 h       <math>R^1</math>         R<sup>1</sup> <math>R^2</math>         R<sup>1</sup> <math>R^2</math></td> <td>ConditionsProduct(s) and Yield(s) (%)1. TiCl4, CH2Cl2, THF, 0°<br/>2. TMEDA, 25°, 30 min<br/>4. &gt;C=0, Me3SiCHBr2, CH2Cl2,<br/>25°, 2-5 h<math>R^1</math><math>R^2</math><br/><math>R^2</math>1. TiCl4, CH2Cl2, THF, 0°<br/>2. TMEDA, 25°, 10 min<br/>3. Zn, 25°, 30 min<br/>4. &gt;C=0, R^3CHBr2, THF,<br/>25°, 0.5-5 h<math>R^3</math><br/><math>R^1</math><math>R^3</math><br/><math>R^3</math><br/><math>R^2</math>1. TiCl4, CH2Cl2, THF, 0°<br/>2. TMEDA, 25°, 10 min<br/>3. Zn, 25°, 30 min<br/>4. &gt;C=0, R^3CHBr2, THF,<br/>25°, 0.5-5 h<math>R^3</math><br/><math>R^1</math><math>R^3</math><br/><math>R^2</math>1. TiCl4, CH2Cl2, THF, 0°<br/>2. TMEDA, 25°, 10 min<br/>3. Zn, 25°, 30 min<br/>4. &gt;C=0, R^3CHBr2, THF,<br/>25°, 0.5-5 h<math>R^3</math><br/><math>R^1</math><math>R^3</math><br/><math>R^2</math>1. TiCl4, CH2Cl2, THF, 0°<br/>2. TMEDA, 25°, 10 min<br/>3. Zn, 25°, 30 min<br/>4. &gt;C=0, R^3CHBr2, THF,<br/>25°, 0.5-5 h<math>R^3</math><br/><math>R^1</math><math>R^3</math><br/><math>R^2</math>1. TiCl4, CH2Cl2, THF, 0°<br/>2. TMEDA, 25°, 10 min<br/>3. Zn, 25°, 30 min<br/>4. &gt;C=0, R^3CHBr2, THF,<br/>25°, 0.5-5 h<math>R^1</math><math>R^2</math><br/><math>R^3</math><br/><math>R^3</math><br/><math>R^1</math>1. TiCl4, CH2Cl2, THF,<br/>25°, 0.5-5 h<math>R^3</math><br/><math>R^4</math><math>R^3</math><br/><math>R^2</math>2. TMEDA, 25°, 10 min<br/><math>R^3</math><br/><math>R^4</math><math>R^3</math><br/><math>R^2</math>2. TMEDA, 25°, 30 min<br/><math>R</math><math>R^3</math><br/><math>R^4</math><math>R^1</math><math>R^2</math><br/><math>R^3</math><br/><math>R^3</math><br/><math>R^4</math><math>R^1</math><math>R^2</math><br/><math>R^3</math><br/><math>R^4</math><math>R^1</math><math>R^2</math><br/><math>R^3</math><br/><math>R^4</math><math>R^1</math><math>R^2</math><br/><math>R^3</math><br/><math>R^4</math><math>R^1</math><math>R^2</math><br/><math>R^3</math><br/><math>R^4</math><math>R^1</math><math>R^2</math><br/><math>R^3</math><br/><math>R^4</math><math>R^1</math><math>R^2</math><br/><math>R^3</math><br/><math>R^4</math><math>R^1</math><math>R^2</math><br/><math>R^3</math><br/><math>R^4</math><math>R^1</math><math>R^2</math><br/><math>R^3</math><br/><math>R^4</math><math>R^1</math><math>R^2</math><br/><math>R^4</math><br/><math>R^4</math><math>R^1</math><math>R^2</math><br/><math>R</math></td> | Conditions       Product(s) and Yield         1. TiCl4, CH2Cl2, THF, 0°       2. TMEDA, 25°, 15 min         3. Zn, 25°, 30 min       4. >C=O, Me3SiCHBr2, CH2Cl2, 25°, 2-5 h         1. TiCl4, CH2Cl2, THF, 0° $R^1$ 2. TMEDA, 25°, 10 min $R^1$ 3. Zn, 25°, 30 min       64)         4. >C=O, R <sup>3</sup> CHBr2, THF, 0° $R^1$ 2. TMEDA, 25°, 10 min $R^1$ 3. Zn, 25°, 30 min $R^1$ 4. >C=O, R <sup>3</sup> CHBr2, THF, 25°, 0.5-5 h $R^1$ R <sup>1</sup> $R^2$ | ConditionsProduct(s) and Yield(s) (%)1. TiCl4, CH2Cl2, THF, 0°<br>2. TMEDA, 25°, 30 min<br>4. >C=0, Me3SiCHBr2, CH2Cl2,<br>25°, 2-5 h $R^1$ $R^2$<br>$R^2$ 1. TiCl4, CH2Cl2, THF, 0°<br>2. TMEDA, 25°, 10 min<br>3. Zn, 25°, 30 min<br>4. >C=0, R^3CHBr2, THF,<br>25°, 0.5-5 h $R^3$<br>$R^1$ $R^3$<br>$R^3$<br>$R^2$ 1. TiCl4, CH2Cl2, THF, 0°<br>2. TMEDA, 25°, 10 min<br>3. Zn, 25°, 30 min<br>4. >C=0, R^3CHBr2, THF,<br>25°, 0.5-5 h $R^3$<br>$R^1$ $R^3$<br>$R^2$ 1. TiCl4, CH2Cl2, THF, 0°<br>2. TMEDA, 25°, 10 min<br>3. Zn, 25°, 30 min<br>4. >C=0, R^3CHBr2, THF,<br>25°, 0.5-5 h $R^3$<br>$R^1$ $R^3$<br>$R^2$ 1. TiCl4, CH2Cl2, THF, 0°<br>2. TMEDA, 25°, 10 min<br>3. Zn, 25°, 30 min<br>4. >C=0, R^3CHBr2, THF,<br>25°, 0.5-5 h $R^3$<br>$R^1$ $R^3$<br>$R^2$ 1. TiCl4, CH2Cl2, THF, 0°<br>2. TMEDA, 25°, 10 min<br>3. Zn, 25°, 30 min<br>4. >C=0, R^3CHBr2, THF,<br>25°, 0.5-5 h $R^1$ $R^2$<br>$R^3$<br>$R^3$<br>$R^1$ 1. TiCl4, CH2Cl2, THF,<br>25°, 0.5-5 h $R^3$<br>$R^4$ $R^3$<br>$R^2$ 2. TMEDA, 25°, 10 min<br>$R^3$<br>$R^4$ $R^3$<br>$R^2$ 2. TMEDA, 25°, 30 min<br>$R$ $R^3$<br>$R^4$ $R^1$ $R^2$<br>$R^3$<br>$R^3$<br>$R^4$ $R^1$ $R^2$<br>$R^3$<br>$R^4$ $R^1$ $R^2$<br>$R^4$<br>$R^4$ $R^1$ $R^2$<br>$R$ |

n-C8H17

Ph

Me

(71)

79







Table V. Alkylidenation of Esters (Continued)



Table VI. Alkylidenation of Ketones and Aldehydes





| Reactant | Conditions                                                                                                                                                         | Product(s) and Yield(s) (%)                                                                          | Refs<br>87 |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------|
|          | 1. $Cp_2Ti$ , $C_6H_6$ , $Me_2C=C=CH_2$ ,<br>2. >C=O, rt, 12 h                                                                                                     | H<br>C<br>Me (53)                                                                                    |            |
| Ph<br>Ph | 1. Cp <sub>2</sub> Ti , C <sub>6</sub> H <sub>6</sub> , CH <sub>2</sub> =C=CH <sub>2</sub> ,<br>2. >C=O, п, 12 h                                                   | Ph<br>Ph C=CH <sub>2</sub> (58)                                                                      | 87         |
|          | 1. $Cp_2Ti$ , $C_6H_6$ , $Me_2C=C=CH_2$ ,<br>2. >C=O, $\pi$ , 12 h                                                                                                 | $\begin{array}{c} Ph \\ \searrow \\ Ph \end{array} C = \begin{pmatrix} Me \\ Me \end{pmatrix} $ (80) | 87         |
|          | I <sup>•</sup> <i>n</i> -PrCH=CHAl(Bu- <i>i</i> ) <sub>2</sub> , Cp <sub>2</sub> TiCl <sub>2</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 0°, 1 h<br>2. >C=O, -50° | $\stackrel{Ph}{\longrightarrow} \stackrel{Bu-n}{\longrightarrow} (61)$                               | 84         |
|          | 1. Cp <sub>2</sub> Ti<br>2. 23°, 10 h                                                                                                                              | Ph (83)                                                                                              | 44         |
|          | 1. Cp <sub>2</sub> Ti , C <sub>6</sub> H <sub>6</sub> , Ph <sub>2</sub> C=C=CH <sub>2</sub> ,<br>2. >C=O, π, 12 h                                                  | $\stackrel{Ph}{\searrow} C \stackrel{Ph}{\longleftarrow} C \stackrel{(56)}{\longrightarrow} Dh$      | 87         |

Table VII. Alkylidenation of Amides

| Reactant                       | Conditions                                                                                                                                                                         |         | Product(s) and Yield(s) (%) |      |    |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------|------|----|
| R <sup>1</sup> C <sub>14</sub> | 1. TiCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , THF, 0°<br>2. TMEDA, 25°, 10 min<br>3. Zn, 25°, 30 min<br>4. >C=O, R <sup>2</sup> CHBr <sub>2</sub> , THF,<br>25°, 3-18 h |         | _R <sup>2</sup>             |      | 18 |
|                                |                                                                                                                                                                                    | RI      | R <sup>2</sup>              |      |    |
|                                |                                                                                                                                                                                    | Ph      | Me                          | (70) |    |
|                                |                                                                                                                                                                                    | Ph      | n-Bu                        | (80) |    |
|                                |                                                                                                                                                                                    | Ph      | Bn                          | (87) |    |
|                                |                                                                                                                                                                                    | C6H11   | Me                          | (82) |    |
|                                |                                                                                                                                                                                    | n-C8H17 | Me                          | ()   |    |

# References

- 1. Maercker, A. Org. React. 1965, 14, 270.
- 2. House, H. O. *Modern Synthetic Reactions*, Benjamin, Menlo Park, CA, 1972, pp. 682–709.
- 3. Cadogan, J. I. G., Ed. Organophosphorus Reagents in Organic Synthesis, Academic; New York, 1979.
- 4. Bestmann, H. J.; Vostrowsky, O. Top. Curr. Chem. 1983, 109, 65.
- 5. Peterson, D. J. J. Org. Chem. 1968, 33, 780.
- Kauffmann, R. K.; Woltermann, A. Angew. Chem., Int. Ed. Engl. 1977, 16, 862.
- 7. Sowerby, R. L.; Coates, R. M. J. Am. Chem. Soc. 1972, 94, 4758.
- 8. Johnson, C. R.; Elliott, R. C. J. Am. Chem. Soc. 1982, 104, 7041.
- 9. Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc. 1978, **100**, 3611.
- 10. Pine, S. H.; Zahler, R.; Evans, D. A.; Grubbs, R. H. J. Am. Chem. Soc. 1980, **102**, 3270.
- 11. Takai, K.; Hotta, Y.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1978, 2417.
- Pine, S. H.; Pettit, R. J.; Geib, G. D.; Cruz, S. G.; Gallego, C. H.; Tijerina, T.; Pine, R. D. J. Org. Chem. 1985, **50**, 1212.
- 13. Gajewski, J. J.; Gee, K. R.; Jurayj, J. J. Org. Chem. 1990, 55, 1813.
- 14. Okazoe, T.; Takai, K.; Oshima, K.; Utimoto, K. J. Org. Chem. 1987, **52**, 4410.
- Brown-Wensley, K. A.; Buchwald, S. L.; Cannizzo, L.; Clauson, L.; Ho, S.; Meinhardt, D.; Stille, J. R.; Straus, D.; Grubbs, R. H. Pure Appl. Chem. 1983, 55, 1733.
- 16. Meegalla, S. K.; Rodrigo, R. Synthesis 1989, 942.
- 17. Hakam, K.; Thielmann, M.; Theilmann, T.; Winterfeldt, E. Tetrahedron 1987, **43**, 2035.
- Takai, K.; Fujimura, O.; Kataoka, Y.; Utimoto, K. Tetrahedron Lett. 1989, 30, 211.
- 19. Takai, K.; Kataoka, Y.; Okazoe, T.; Utimoto, K. Tetrahedron Lett. 1988, **29**, 1065.
- 20. Cannizzo, L. F.; Grubbs, R. H. J. Org. Chem. 1985, 50, 2316.
- 21. Uijttewaal, A. P.; Jonkers, F. L.; Van der Gen, A. J. Org. Chem. 1979, **44**, 3157.
- 22. LeCorre, M. Bull. Soc. Chim. Fr. 1974, 9-10, 2005.
- 23. Pine, S. H.; Shen, G. S.; Hoang, H. Synthesis 1991, 165.
- 24. Clawson, L.; Buchwald, S. L.; Grubbs, R. H. Tetrahedron Lett. 1984, **25**, 5733.

- 25. Howard, T. R.; Lee, J. B.; Grubbs, R. H. J. Am. Chem. Soc. 1980, **102**, 6876.
- 26. Takai, K.; Tezuka, M.; Kataoka, Y.; Utimoto, K. Synlett. 1989, 27.
- 27. Lombardo, L. Tetrahedron Lett. 1982, 23, 4293.
- 28. Lombardo, L. Org. Syn. 1987, 65, 81.
- 29. Van de Heisteeg, B. J. J.; Schat, G.; Akkerman, O. S.; Bickelhaupt, F. Tetrahedron Lett. 1987, **28** 6493.
- 30. Hartner, F. W., Jr.; Schwartz, J. J. Am. Chem. Soc. 1981, 103, 4979.
- 31. Clift, S. M.; Schwartz, J. J. Am. Chem. Soc. 1984, 106, 8300.
- 32. Schrock, R. R. Acc. Chem. Res. 1979, 12, 98.
- 33. Aguero, A.; Kress, J.; Osborn, J. A. J. Chem. Soc., Chem. Commun. 1986, 531.
- 33a. Freudenberger, J. H.; Schrock, R. R. Organometallics 1986, 5, 398.
- 34. Smegal, J. A.; Meier, I. K.; Schwartz, J. J. Am. Chem. Soc. 1986, **108**, 1322.
- Kauffmann, T.; Ennen, B.; Sander, J.; Wieschollek, R. Angew. Chem., Int. Ed. Engl. 1983, 22, 244.
- Kauffmann, T.; Fiegenbaum, P.; Wiesschollek, R. Angew. Chem., Int. Ed. Engl. 1984, 23, 531.
- 37. Kauffmann, T.; Kieper, G. Angew. Chem., Int. Ed. Engl. 1984, 23, 532.
- 38. Pelter, A.; Singaram, B.; Wilson, J. W. Tetrahedron Lett. 1983, 24, 635.
- 39. Takai K.; Nitta, K.; Utimoto, K. J. Am. Chem. Soc. 1986, **108**, 7408.
- 40. Anslyn, E. V.; Grubbs, R. H. J. Am. Chem. Soc. 1987, **109**, 4880.
- 41. Ott, K. C.; deBoer, E. J. M.; Grubbs, R. H. Organometallics 1984, 3, 223.
- 42. Grubbs, R. H., California Institute of Technology, Pasadena, CA, personal communication.
- 43. Krusic, P. J.; Tebbe, F. N. Inorg. Chem. 1982, 21, 2900.
- 44. Gilliam, L. R.; Grubbs, R. H. Organometallics 1986, 5, 721.
- 45. Hartner, F. W., Jr.; Schwartz, J.; Clift, S. M. J. Am. Chem. Soc. 1983, **105**, 640.
- 46. Van de Heisteeg, B. J. J.; Schat, G.; Akkerman, O. S.; Bickelhaupt, F. J. Organomet. Chem. 1986, **310**, C25.
- 47. Binger, P., Muller, P., Benn, R.; Mynott, R. Angew. Chem., Int. Ed. Engl., 1989, **28**, 610.
- 48. Casey, C. P.; Vosejpka, P. C.; Askham, F. R. J. Am. Chem. Soc. 1990, **112**, 3713.
- 49. Eisch, J. J.; Protrowski, A. Tetrahedron Lett. 1983, 24, 2043.
- 50. Mortimore, M.; Kocienski, P. Tetrahedron Lett. 1988, 29, 3357.
- 51. Okazoe, T.; Hibino, J.; Takai, K.; Nozaki, H. Tetrahedron Lett. 1985, 26,

5581.

- 52. Piotrowski, A. M.; Malpass, D. B.; Boleslawski, M. P.; Eisch, J. J. J. Org. Chem. 1988, **53**, 2829.
- 53. Takai, K.; Hotta, Y.; Oshima, K.; Nozaki, H. Bull. Chem. Soc. Jpn. 1980, **53**, 1698.
- 54. Pine, S. H.; Deming, M.; Hanson, B.; Komanduri, R., unpublished results.
- 55. Straus, D. A.; Grubbs, R. H. Organometallics 1988, 7, 780.
- 56. Dotz, K. H. Angew. Chem., Int. Ed. Engl. 1984, 23, 587.
- 57. Bartlett, P. A.; Nakagawa, Y.; Johnson, C. R.; Reich, S. H.; Luis, A. J. Org. Chem. 1988, **53**, 3195.
- 58. Daub, G. W.; McCoy, M. A.; Sanchez, M. G.; Carter, J. S. J. Org. Chem. 1983, **48**, 3876.
- 59. Hayashi, T.; Yamamoto, A.; Ito, Y. Synthetic Commun., 1989, **19**, 2109.
- 60. Ireland, R. E.; Varney, M. D. J. Org. Chem. 1983, 48, 1829.
- Kinney, W. A.; Coghlan, M. J.; Paquette, L. A. J. Am. Chem. Soc. 1985, 107, 7352.
- Shishido, K.; Hiroya, K.; Fukumoto, K.; Kametani, T.; Kabuto, C. J. Chem. Soc., Perkin Trans. 1, 1989, 1443.
- 63. Stevenson, J. W. S.; Bryson, T. A. Tetrahedron Lett. 1982, 23, 3143.
- 64. Johnson, B. M.; Vollhardt, K. P. C. Synlett. 1990, 209.
- 65. Stille, J. R.; Grubbs, R. H. J. Am. Chem. Soc. 1986, 108, 855.
- Stille, J. R.; Santarisiero, B. D.; Grubbs, R. H. J. Org. Chem. 1990, 55, 843.
- 67. Pine, S. H.; Gallego, C., unpublished results.
- 68. Hickmott, P. W. Tetrahedron 1982, 38, 1975.
- Stork, G.; Brizzolara, A.; Landesman, H.; Szmuszkovicz, J.; Terrell, R. J. Am. Chem. Soc. 1963, 85, 207.
- 70. White, W. A.; Weingarten, H. J. Org. Chem. 1967, 32, 213.
- 71. Chou, T-S.; Huang, S-B. Tetrahedron Lett. 1983, 24, 2169.
- 72. Chou, T-S.; Huang, S-B. Bull. Inst. Chem. Acad. Sini. 1984, **41**, [C.A. 1985, **102**, 24225].
- 73. Stille, J. R.; Grubbs, T. H. J. Am. Chem. Soc. 1983, 105, 1664.
- 74. Boeckmann, R. K., Jr.; Silver, S. M. Tetrahedron Lett. 1973, 14, 3497.
- 75. McMurry, J. E.; Choy, W. Tetrahedron Lett. 1980, 21, 2477.
- 76. Corey, E. J.; Kwiatowski, G. T. J. Am. Chem. Soc. 1966, 88, 5654.
- 77. Furber, M.; Mander, L. N. Tetrahedron Lett. 1988, 29, 3339.
- 78. Gewali, M. B.; Ronald, R. C. J. Org. Chem. 1982, 47, 2792.
- 79. Hibino, J.; Okazoe, T.; Takai, K.; Nozaki, H. Tetrahedron Lett. 1985, **26**, 5579.

- 80. Jacobs, R. T.; Feutrill, G. I.; Meinwald, J. J. Org. Chem. 1990, 55, 4051.
- Mincione, E.; Pearson, A. J.; Bovicelli, P.; Chandler, M.; Heywood, G. C. Tetrahedron Lett. 1981, 22, 2929.
- Reich, H. J.; Eisenhart, E. K.; Olson, R. E.; Kelly, M. J.; J. Am. Chem. Soc. 1986, **108**, 7791.
- 83. Tebbe, F. N.; Buggenberger, L. J. J. Chem. Soc., Chem. Commun. 1973, 227.
- 84. Yoshida, T. Chem. Lett. 1982, 429.
- 85. Yoshida, T.; Negishi, E. J. Am. Chem. Soc. 1981, 103, 1276.
- 86. Bechaus, R.; Thiele, K-H. J. Organomet. Chem. 1989, 369, 43.
- 87. Buchwald, S. L.; Grubbs, R. H. J. Am. Chem. Soc. 1983, 105, 5490.
- 88. Takai, K.; Okazoe, T.; Utimoto, K. have had some success in the absence of TMEDA; personal communication.
- 89. Ireland, R. E.; Wardle, R. B. J. Org. Chem. 1987, 52, 1780.
- 90. Aldendice, M.; Spino, C.; Weiler, L. Tetrahedron Lett. 1984, 25, 1643.
- 91. Arai, Y.; Yamamoto, M.; Koizumi, T. Bull. Chem. Soc. Jpn. 1988, 61, 467.
- 92. Cambie, R. C.; McNally, H. M.; Robertson, J. D.; Rutledge, P. S.; Woodgate, P. D. Aust. J. Chem. 1984, **37**, 409.
- Imagawa, T.; Sonobe, T.; Ishiwari, H.; Akiyama, T.; Kawanisi, M. J. Org. Chem. 1980, 45, 2005.
- 94. Kay, I. T.; Bartholomew, K. Tetrahedron Lett. 1984, 25, 2035.
- 95. Shelly, K. P.; Weiler, L. Can. J. Chem. 1988, 66, 1359.
- 96. Furber, M.; Mander, L. N. J. Am. Chem. Soc. 1988, 110, 4084.
- 97. Iwagawa, T.; Matsuara, K.; Murai, N.; Akiyama, T.; Kawanisi, M. Bull. Chem. Soc. Jpn. 1983, 56, 3020.
- 98. Lombardo, L.; Mander, L. N. J. Org. Chem. 1983, 48, 2298.
- 99. Node, M.; Kajimoto, T.; Ito, N.; Tamada, J.; Fujita, E.; Fuji, K. J. Chem. Soc., Chem. Commun. 1986, 1164.
- 100. Pine, S. H.; Kim, G.; Lee, V. Org. Syn. 1990, 69, 72.
- 101. Paquette, L. A.; Sweeney, T. J. J. Org. Chem. 1990, 55, 1703.
- 102. Adams, J.; Frenette, R. Tetrahedron Lett. 1987, 28, 4773.
- 103. Bestmann, H. J.; Dornauer, H.; Rostock, K. Chem. Ber. 1970, 103, 2011.
- 104. Wadsworth, W. S.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1961.
- 105. Horner, L.; Hoffmann, H.; Wippel, H. G. Chem. Ber. 1958, 91, 61.
- 106. Stille, J. R.; Grubbs, R. H. J. Am. Chem. Soc. 1986, 108, 855.
- 107. Corey, E. J.; Kang, J. J. Am. Chem. Soc. 1982, 104, 4724.
- 108. Fitjer, L.; Quabeck, U. Synth. Commun. 1985, 15, 855.
- 109. Greenwald, R.; Chaykovsky, M.; Corey, E. J. J. Org. Chem. 1963, 28,

1128.

- 110. Trost, B. M.; Latimer, L. H. J. Org. Chem. 1978, 43, 1031.
- 111. Brook A. G.; Duff, J. M.; Anderson, D. G. Can. J. Chem. 1970, 48, 561.
- 112. Johnson, C. R.; Bradley, D. T. J. Org. Chem. 1987, 52, 281.
- 113. Fieser, L. F.; Fieser, M. *Reagents for Organic Synthesis*, Vol. **6**, Wiley, New York, 1977, p. 637.
- 114. Sharpless, K. B.; Young, M. W.; Lauer, R. F. Tetrahedron Lett. 1973, 1979.
- 115. Johnson, C. R.; Shanklin, J. R.; Kirchhoff, R. A. J. Am. Chem. Soc. 1973, **95**, 6462.
- 116. Cannizzo, L. F.; Grubbs, R. H. J. Org. Chem. 1985, 50, 2386.
- 117. Chou, F. S.; Huang, S. B.; Hsu, W. H. J. Chin. Chem. Soc. 1982, **30**, 277 [C.A. 1984, **100**, 85855].
- 118. Shriver, D. F.; Drezdzon, M. A. *The Manipulation of Air-Sensitive Compounds*, Wiley-Interscience, New York, 1986.
- 119. Shriver, D. F.; Drezdzon, M. A. *The Manipulation of Air-Sensitive Compounds*, Wiley-Interscience, New York, 1986, p. 90.
- 120. Cambie, R. C.; Franich, R. A.; Larsen, D.; Rutledge, P. S.; Ryan, G. R.; Woodgate, P. D. Aust. J. Chem. 1990, 43, 21.
- 121. Paquette, L. A.; Gilday, J. P.; Maynard, G. D. J. Org. Chem. 1989, **54**, 5044.
- 122. Fieser, L. F.; Fieser, M. *Reagents for Organic Synthesis*, Vol. **1**, Wiley, New York, 1967, p. 1276.
- 123. Evans, D. A.; Dow, R. L.; Shih, T. L.; Takacs, J. M.; Zahler, R. J. Am. Chem. Soc. 1990, **112**, 5290.
- 124. Rigby, J. H.; Wilson, J. A. Z. J. Org. Chem. 1987, 52, 34.
- 125. Mash, E. A.; Hemperly, S. B.; Welson, K. A., Heidt, P. C.; Vandeusen, S. J. Org. Chem. 1990, **55**, 2045.
- 126. Wilcox, C. S.; Long, G. W.; Suh, H. Tetrahedron Lett. 1984, 25, 395.
- 127. RajanBabu, T. V.; Reddy, G. S. J. Org. Chem. 1986, **51**, 5458.
- 128. Burrows, C. J.; Carpenter, B. K. J. Am. Chem. Soc. 1981, 103, 6983.
- 129. Brown-Wensley, K. A. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 1982.
- Sorensen, P. E.; Pedersen, K. J.; Pedersen, P. R.; Kanagasabapathy, V. M.; McClelland, R. A. J. Am. Chem. Soc. 1988, **110**, 5118.
- 131. Petasis, N. A.; Bzowej, E. I. J. Am. Chem. Soc. 1990, **112**, 6392.
- 132. Clark, J. S.; Holmes, A. B. Tetrahedron Lett. 1988, 29, 4333.
- 133. Carling, R. W.; Curtis, N. R.; Holmes, A. B. Tetrahedron Lett., 1989, **30**, 6081.

- 134. Barrett, A. G. M.; Bezuidenhoudt, B. C. B.; Gasiecki, A. F.; Howell, A. R.; Russell, M. A. J. Am. Chem. Soc. 1989, **111**, 1392.
- 135. Ireland, R. E.; Thaisrivongs, S.; Dussault, P. H. J. Am. Chem. Soc. 1988, 110, 5768.
- 136. Carling, R. W.; Holmes, A. B. J. Chem. Soc., Chem. Commun. 1986, 565.
- 137. Peterson, P. E.; Stepanian, M. J. Org. Chem., 1988, 53, 1903.
- 138. Ziegler, F. E.; Kneisley, A.; Thottahil, J. K.; Wester, R. T. J. Am. Chem. Soc. 1988, **110**, 5434.
- 139. Kang, H. J.; Paquette, L. A. J. Am. Chem. Soc. 1990, **112**, 3252.
- 140. Ziegler, F. E.; Wester, R. T. Tetrahedron Lett. 1984, 25, 617.
- 141. Block, E.; Eswarakrishnan, V.; Gebreyes, K. Tetrahedron Lett. 1984, **25**, 5469.
- 142. Blattner, R.; Ferrier, R. J. J. Chem. Soc., Chem. Commun. 1987, 1008.
- 143. Kozikowski, A. P.; Ghosh, A. K. Tetrahedron Lett. 1983, 24, 2623.
- 144. Burgess, K.; Ohlmeyer, M. J. Tetrahedron Lett. 1989, **30**, 5857.
- 145. Block, E.; Aslam, M.; Eswarakrishnan, V.; Gebreyes, K.; Hutchinson, J.; Iyer, R.; Laffitte, J. A.; Wall, A. J. Am. Chem. Soc. 1986, **108**, 4568.
- 146. Sodeoka, M.; Shibasaki, M. Chem. Lett. 1984, 579.
- 147. Wenkert, E.; Marsaioli, A. J.; Moeller, P. D. R. J. Chrom. 1988, 440, 449.
- 148. Imagawa, T.; Murai, N.; Akiyama, T.; Kawanisi, M. Tetrahedron Lett. 1979, 1691.
- 149. Kanemoto, S.; Shimizu, M.; Yoshioka, H. J. Chem. Soc., Chem. Commun. 1989, 690.
- 150. Rigby, J. H.; Senanayke, C. J. Am. Chem. Soc. 1987, **109**, 3147.
- 151. Larsen, D. S.; Stoodley, R. J. J. Chem. Soc., Perkin Trans. 1, 1989, 1841.
- 152. Tandanier, J.; Lee, C. M.; Whittern, D.; Wideburg, N. Carbohydr. Res. 1990, **201**, 185.
- 153. Buding, H.; Fuchs, B.; Musso, H. Chem. Ber. 1985, **118**, 4613.
- 154. Stork, G.; Reynolds, M. E. J. Am. Chem. Soc. 1988, **110**, 6911.
- 155. Martin, M.; Clardy, J. Pure Appl. Chem. 1982, 54, 1915.
- 156. Hoffmann, H. M. R.; Vathke, H. Chem. Ber. 1980, **113**, 3416.
- 157. Krishnamurti, R.; Kuivila, H. G. J. Org. Chem. 1986, 51, 4947.
- 158. Snowden, R. L.; Sonney, P.; Ohloff, G. Helv. Chim. Acta 1981, 64, 25.
- 159. Falorni, M.; Lardicci, L. J. Org. Chem. 1986, 51, 5291.
- 160. Tour, J. M.; Bedwith, P. V.; Wu, R. Tetrahedron Lett. 1989, **30**, 3927.
- 161. Ingold, K. V.; Walton, J. C. J. Am. Chem. Soc. 1987, 109, 6937.
- 162. Winkler, J. D.; Muller, C. L.; Scott, R. D. J. Am. Chem. Soc. 1988, 101, 4831.

- 163. Cardwell, K.; Hewitt, B.; Ladlow, M.; Magnus, P. J. Am. Chem. Soc. 1988, 110, 2242.
- 164. Barco, A.; Benetti, S.; Casolari, A.; Manfredini, S.; Pollini, G. P.; Polo, E.; Zanirato, V. Tetrahedron 1989, **45**, 3935.
- 165. Trost, B. M.; Tanoury, G. J. J. Am. Chem. Soc. 1988, **110**, 1636.
- 166. Binns, F.; Wallace, T. W. Tetrahedron Lett. 1989, **30**, 1125.
- 167. McMurry, J. E.; Swenson, R. Tetrahedron Lett. 1987, 28, 3209.
- 168. Vathke-Ernst, H.; Hoffmann, H. M. R. Chem. Ber. 1981, **114**, 1464.
- 169. Yadav, J. S.; Joshi, B. V.; Gadgil, V. R. Indian J. Chem. 1987, 26B, 399.
- 170. Oppolzer, W.; Cunningham, A. F. Tetrahedron Lett. 1986, 27, 5467.
- 171. Shimada, J.; Hashimoto, K.; Kim, B. H.; Nakamura, E.; Kuwajima, I. J. Am. Chem. Soc. 1984, **106**, 1759.
- 172. Gabioud, R.; Vogel, P. Helv. Chem. Acta 1986, 69, 865.
- 173. Williard, P. G.; Delaszlo, S. E. J. Org. Chem. 1985, 50, 3738.
- 174. Burnier, G.; Schwager, L.; Vogel, P. Helv. Chem. Acta 1986, 69, 1310.
- 175. Leyendecker, F.; Compt, M. T. Tetrahedron 1987, 43, 85.
- 176. Cleve, A.; Bohlmann, F. Tetrahedron Lett. 1989, **30**, 1241.
- 177. Jasperse, C. P.; Curran, D. P. J. Am. Chem. Soc. 1990, **112**, 5601.
- 178. Trumtel, M.; Tavecchia, P.; Veyrieres, A.; Sinay, P. Carbohydr. Res. 1990, **202**, 257.
- 179. Chow, T. J.; Wu, T. K.; Shih, H. J. J. Chem. Soc., Chem. Commun. 1989, 490.
- 180. Magnus, P.; Slater, M. J.; Principe, L. M. J. Org. Chem. 1989, 54, 5148.
- 181. Ogawa, Y.; Shibasaki, M. Tetrahedron Lett. 1984, 25, 1067.
- 182. Mash, E. A.; Math, S. K.; Flann, C. J. Tetrahedron 1989, 45, 4945.
- 183. Hauptmann, H.; Muhlbauer, G.; Sass, H. Tetrahedron Lett. 1986, **27**, 6189.
- 184. Ley, S. V.; Murray, P. J.; Palmer, B. D. Tetrahedron 1985, **41**, 4765.
- 185. Shishido, K.; Tokunga, Y.; Omachi, N.; Hiroya, K.; Fukumoto, K.; Kametani, T. J. Chem. Soc., Chem. Commun. 1989, 1093.
- 186. Hart, T. W.; Comte, M. T. Tetrahedron Lett. 1985, 26, 2713.
- 187. Tokoroyama, T.; Tsukamoto, M.; Asaka, T.; lio, H. Tetrahedron Lett. 1987, **28**, 6645.
- 188. Newmoto, H.; Nagai, M.; Fukumoto, K.; Kametani, T. J. Chem. Soc., Perkin Trans. 1 1986, 1621.
- 189. Mase, T.; Sodeoka, M.; Shibasaki, M. Tetrahedron Lett. 1984, 25, 5087.
- 190. Cambie, R. C.; Clark, G. R.; Goeth, M. E.; Rickard, C. E. F.; Rutledge, P. S.; Ryan, G. R.; Woodgate, P. D. Aust. J. Chem. 1989, 42, 497.
- 191. Sakurai, K.; Kitahara, T.; Mori, K. Tetrahedron 1988, 44, 6581.
- 192. Tokonoyama, T.; Kanazawa, R.; Yamamoto, S.; Kamikawa, T.; Suenaga, H.; Miyabe, M. Bull. Chem. Soc. Jpn. 1990, **63**, 1720.
- 193. Piers, E.; Llinas-Brunet, M. J. Org. Chem. 1989, 54, 1483.
- 194. Kende, A. S.; Johnson, S.; Sanfilippo, P.; Hodges, J. C.; Jungheim, L. N. J. Am. Chem. Soc. 1986, **108**, 3513.
- 195. Suzuki, M.; Koyano, H.; Nayori, R. J. Org. Chem. 1987, 52, 5583.
- 196. Shibasaki, M.; Torisawa, Y.; Ikegami, S. Tetrahedron Lett. 1983, **24**, 3493.
- 197. Magnus, P.; Mugrage, B.; Deluca, M.; Cain, G. A. J. Am. Chem. Soc. 1990, **112**, 5220.
- 198. Bunnelle, W. H.; Shangraw, W. R. Tetrahedron 1987, 43, 2005.
- 199. Nicollgriffith, K.; Weiler, L. J. Chem. Soc., Chem. Commun. 1984, 659.
- 200. Frye, L. L.; Robinson, C. H. J. Chem. Soc., Chem. Commun. 1988, 129.
- 201. Wattanasin, S.; Kathawala, F. G. Synth. Commun. 1989, 19, 2659.

## The Baeyer–Villiger Oxidation of Ketones and Aldehydes

Grant R. Krow, Temple University, Philadelphia, Pennsylvania

#### 1. Introduction

The oxidative alicyclic conversion of ketones into lactones with permonosulfuric acid was discovered by Baeyer and Villiger in 1899, (1) and in their honor the general process by which ketones are converted into esters or lactones is now known as the Baeyer-Villiger reaction. The literature on this synthetically useful process has been reviewed comprehensively through 1953 in Volume 9 of Organic Reactions, (2) and less comprehensive reviews of the reaction have appeared since then. 3–10g More recent investigations have led to the development of new synthetic reagents, to improvements in experimental reaction conditions, and to a better understanding of regiochemical and stereochemical aspects of the reaction. Baeyer-Villiger reactions now often can be carried out with functional group chemoselectivity and regiochemical control. Although the recent removal from commerce of 90% hydrogen peroxide and reagents based upon this oxidant are a setback to Baeyer-Villiger reaction methodology, alternative reagents, catalysts, and methods described in this review are available to fill the gaps.

The definition of the Baeyer–Villiger reaction is somewhat fuzzy, and can be considered to include both ketones and aldehydes. In addition to the traditional use of organic and inorganic peracids as oxidants, examples of oxygen insertion reactions using hydrogen peroxide, alkyl peroxides, and several metal ion oxidants are considered to fall within the scope of this chapter and are included in the tabular survey.

### 2. Mechanism

#### 2.1. The Criegee Mechanism

The two-step ionic mechanism for the Baeyer–Villiger oxidation outlined by Criegee (11) continues to be generally accepted. Evidence for this mechanism obtained prior to 1953 is discussed in the previous review of this reaction. (2) As shown in Eq. 1, addition of peracid in step 1 to the ketone carbonyl provides a tetrahedral intermediate 1. This step can be catalyzed by acid or base. (12) In step 2 the group  $R_M$  migrates with retention of configuration to oxygen as the O - O bond breaks and releases the leaving group to provide product ester or lactone.



The two-step ionic mechanism for the Baeyer-Villiger reaction.

#### 2.2. Nature of the Migration Step

Evidence in support of a concerted migration step 2 includes stereochemical and isotopic labeling results, kinetic studies, and theoretical calculations. The migrating group is not free, since oxidation of ( $\mathbf{n}$ )-*exo*-norbornyl ketone 2 with perbenzoic acid (PBA) in chloroform provides *exo*-acetate 3 with 94–100% retention of optical purity. Failure to observe racemization or *exo/endo* isomerization indicates the migrating group moves with its electrons. (13)



The leaving group does not leave intermediate 1 prior to migration. Oxidation of <sup>18</sup>O-carbonyl labeled benzophenone, *p*-methoxybenzophenone, and

fluorenone with 40% peracetic acid/acetic acid/chloroform provides ester with the isotopic label in the carbonyl oxygen. This excludes a mechanism with equivalent oxygens such as an intermediate oxonium ion species **4** in which hydrogen exchange might occur. (14) Also, in the oxidation of cyclohexyl phenyl ketone in ethylene chloride at 30° there is a greater regioselectivity for cyclohexyl migration with peracetic acid than trifluoroperacetic acid (TFPAA). This result is inconsistent with a common intermediate, such as an oxonium ion, and suggests that migration occurs while the carboxylic acid residue is leaving the Criegee intermediate. (15)



Isotope effects support a migration in concert with departure of the leaving group. A secondary beta deuterium–isotope effect  $k_{\rm H}/k_{\rm D}$  = 1.052/D is calculated for the TFPAA oxidation of phenyl-2-propanone. The positive value indicates a partial carbonyl bond adjacent to the nonmigrating methyl group in the transition state **5** for shifting of the benzyl group. (16) Significant <sup>14</sup>C isotope effects when X = CN, CI, H, CH<sub>3</sub> ( $k_{12}/k_{14}$  = 1.084 to 1.032) are found for *m*-chloroperbenzoic acid



(MCPBA) oxidation of *para*-X-substituted acetophenones-1-<sup>14</sup>C. The isotope effects are expected for rate-determining aryl migration from **1** in step 2, but rule out both formation of the Criegee intermediate and breaking of the O -O bond without concomitant rearrangement as rate-determining steps. (17)

Theoretical models, which trace the timing of the migration from carbon to oxygen during step 2 of the Baeyer–Villiger rearrangement, are consistent with the experimental results. MINDO-3 calculations rule out rate-determining migration to a cationic oxygen for reaction of performic acid with cyclobutanone. (18) Nonempirical SCF-MO and CNDO/2 treatments, which trace methyl migration in a model reaction, indicate little reorganization in the migrating methyl group and considerable carbonyl formation. (19)

#### 2.3. Rate-Determining Migration

Most evidence indicates that the concerted migration step 2 is rate determining. (16, 17, 20, 21) Aryl substituents do not affect the Baeyer–Villiger reaction of aryl ketones in the same way as reactions known to proceed by rate-determining addition. For example, rates of simple carbonyl addition reactions such as oximation and semicarbazone formation can be correlated by a linear free energy relationship, (22) but a linear relationship does not exist between the free energies of activation for the Baeyer–Villiger reaction of dialkyl, cycloalkyl, and methyl phenyl ketones and the free energies of activation for oximation of the same ketones. This suggests that decomposition of the Criegee intermediate is rate determining. (23)

Baeyer–Villiger reaction rates generally are not those expected for rate-determining carbonyl addition. Cyclohexanone reacts 200 times slower with peracetic acid than with TFPAA using trifluoroacetic anhydride catalyst in ethylene chloride at 30°. Since the weakly nucleophilic TFPAA should be less reactive than peracetic acid toward carbonyl addition, the observed rate difference strongly favors rate-determining decomposition of the Criegee intermediate. (15)

Electron withdrawal on the leaving group facilitates the rate-determining migration step as indicated by the small positive values [ $\rho = 0.2-0.4$  ( $\sigma$ )] noted for the oxidation of benzaldehyde with substituted perbenzoic acids at pH < 9. (12) Acid catalysis also facilitates loss of the leaving group at low pH. (12, 23-27)

Electron-donating groups on the migrating group facilitate the rearrangement. Rate data for TFPAA oxidation of *p*-substituted acetophenones in acetonitrile or ethylene chloride (23) and peroxomonophosphoric acid (PMPA) in acetonitrile (28) plotted versus substituent values give similar negative  $\rho$  values ( $\rho = -1.45$ , -1.10, and -2.55). For Hammett plots of the kinetic data for MCPBA oxidation of the same substrates in chloroform, a better linear fit is observed with ( $\rho = -1.36$ ). (17) Peroxomonosulfate (PMSA) oxidations of substituted aryl aldehydes also show a negative value ( $\rho = -1.70$ ), (26) and negative  $\rho$  values -5.7 and -3.8 ( $\sigma^+$ )] were revealed for aryl migration of substituted benzaldehydes in acidic and neutral media. (12) Carbonyl addition reactions normally give moderate positive  $\rho$  values; (23) the negative  $\rho$  values are consistent with an activated complex which is electron deficient on the migrating group during the rate-determining step 2.

Caution must be exercised in using reaction  $\rho$  values to interpret mechanisms, since the equilibrium constant for formation of the Criegee intermediate prior to the rate-determining migration step affects the observed rate data. Hammett results cannot be explained straightforwardly at moderate acidity, but stronger

peracids cause fast equilibrium formation of the Criegee intermediate and give clearer kinetics. (29)

#### 2.4. Rate-Determining Addition

Rate-determining addition (Step 1 of Eq. 1) has been postulated for aryl aldehydes and ketones substituted with strongly electron-donating groups. For MCPBA oxidation of *p*-methoxyacetophenone a negligible carbon isotope effect  $k_{12}/k_{14} = 0.998$  was observed. If there is no equilibrium isotope effect for addition of peracid to the ketone carbonyl, (16) the absence of an isotope effect is consistent with rate-controlling addition of peracid to the ketone carbonyl. (17)

Evidence suggests rate-determining addition to carbonyl for the perbenzoic acid oxidation of *o*- and *p*-hydroxybenzaldehydes in aqueous ethanol. For *p*-methoxybenzaldehyde migration appears to be rate determining above pH 5, whereas the apparent rate below pH 5 is controlled by both addition and migration. (12) In benzene and ethanol solvents migration appears to be rate determining. (29)

A rate-determining addition step 1 (Eq. 1) has been suggested for acid-catalyzed reactions of peroxymonophosphoric acid in aqueous acetic acid with several cyclopentanones and cyclohexanones on the basis of reactivity, activation energy and entropy values, solvent, and catalyst effects. (25) Rate-determining addition occurs in the oxidation of biacetyl and benzil with peroxomonosulfuric acid and peroxomonophosphoric acid; these reactions are not acid catalyzed, and reaction rates increase with a rise in pH. (30) By contrast, rate-determining migration step 2 (Eq. 1) is suggested by  $\rho = -2.55$ ( $\sigma$ ) for the peroxomonophosphoric acid oxidation of substituted acetophenones in acetonitrile. (28) Also, similar activation energy data for peroxomonosulfate oxidation of dialkyl ketones in aqueous acetic acid have been used to support rate-determining rearrangement step 2. (24)

Oxidation of the 1,2-diketone *o*-quinone with isotopically labeled hydrogen peroxide under basic conditions indicates that the normal two-step Baeyer–Villiger mechanism is followed for C - C bond cleavage. (31) It is notable that Hammett correlations of the reactions of substituted benzils indicate the limitations inherent in the use of the sign of  $\rho$  values for the assignment of mechanism. For a reaction with a rapid preequilibrium step followed by a slower migration, the observed rate depends on both the equilibrium constant for formation of the Criegee intermediate and the rate of the migration step (Eq. 2). (32) The noncatalyzed rearrangement of substituted benzils with peracetic acid in acetic acid has a  $\rho = +1.51$  ( $\sigma$ ), while the sulfuric acid catalyzed rearrangement has a  $\rho = -0.67$  ( $\sigma$ ). The change in sign may be consistent with rate-determining addition in both cases. The

positive  $\rho$  in the absence of catalysts reflects the ability of electron-withdrawing groups to facilitate attack by nucleophilic peroxide oxygen on the carbonyl group. The negative  $\rho$  with acid catalysis is postulated to reflect an increase in the value of the equilibrium constant *K* as electron donation facilitates protonation of the benzil (Bz<sub>2</sub>) carbonyl group. (33) Similar arguments might be made to support migration in the adduct as rate-determining.

| Bz <sub>2</sub>    | + $H^+ \xrightarrow{K} Bz_2H^+$              |     |
|--------------------|----------------------------------------------|-----|
| Bz <sub>2</sub> H+ | + $AcO_2H \xrightarrow{k} Adduct$            | (2) |
|                    | $[Bz_2H^+] = K[H^+][Bz_2]$                   | (-) |
| rate =             | $k[Bz_2H^+][AcO_2H] = kK[H^+][Bz_2][AcO_2H]$ |     |

#### 2.5. Alternative Mechanisms

Exceptions to the above generalizations of a two-step ionic mechanism with step 2 migration as rate determining have been suggested. Although a plot of the trifluoroacetic anhydride catalyzed oxidation of p,p'-substituted benzophenones in refluxing methylene chloride versus  $\sigma^+$  is linear with a  $\rho^- = -0.77$ , supporting the ionic mechanism, when peracetic acid is the oxidant there is not a Hammett plot correlation. The relative rate results in Table 1 for these oxidations fit the rate at which aryl radicals attack aromatic rings. Although a mechanism involving a carboxylate radical is implicated under this set of conditions, no carbon dioxide evolution is observed. (34)

|                  | Pera      |     |
|------------------|-----------|-----|
| Substitue        | ent TFPAA | PAA |
| OCH <sub>3</sub> | 211       | 152 |
| $CH_3$           | 26        | 9   |
| NO <sub>2</sub>  | 1         | 3.2 |
| Br               | 14        | 2   |
| CI               | 12        | 1.2 |

# Table 1. Relative Rate Data for Oxidation of *p*,*p*'-Unsymmetrically Substituted Benzophenones

A concerted 1,3-dipolar mechanism has been suggested (Eq. 3). (35) It has been used to rationalize rate law data for the peroxymonophosphoric acid (PMPA) oxidation of cycloalkanones. (25) The results of <sup>18</sup>O-tracer experiments implicate dioxiranes as intermediates in the oxidation of cyclohexanone and acetophenone with bis(trimethylsilyl)peroxomonosulfate. (36)



#### 2.6. Stereoelectronic Effects

Stereoelectronic requirements proposed for the migration step are antiperiplanar arrangements between both a nonbonding electron pair on oxygen and the O - O bond with the bond of the migrating carbon atom as in **6**. (9, 37-40) These prerequisites and considerations of nonbonded steric interactions between R and hydroxy hydrogen have accounted for the observed preference of C-2–methylene migration from conformer **7**. (38, 40)



Evidence for a stereoelectronic effect in an intramolecular Baeyer–Villiger reaction was found in the preferential migration of the methylene carbon during oxidation of cyclohexanone **8**. Assuming rearrangement occurs from the rigid

*trans*-fused intermediate **9**, only bond **a** can assume the proper antiperiplanar orientation for migration. (37)



## 3. Scope and Limitations

#### 3.1. Reactions of Straight-Chain Ketones

3.1.1.1. Oxidation of Dialkyl Ketones

Migratory ability of alkyl groups in acid catalyzed Baeyer–Villiger reactions decreases in the orders tertiary > secondary > primary > methyl, (15, 41-44) and benzyl > primary > methyl. (16, 21) Migratory aptitudes of cyclopropyl ketones with MCPBA or TFPAA are phenyl = secondary > primary > cyclopropyl > methyl. (42, 45) Ketones of the type RCH<sub>2</sub>COCH<sub>2</sub>R, which have only primary alkyl groups attached to carbonyl, are unreactive with perbenzoic acid and peracetic acid, (46) but they do undergo oxidation with the reactive trifluoroperacetic acid, (42) bis(trimethylsilyl)monoperoxysulfate, (47) potassium persulfate in sulfuric acid, (41) and with 90% hydrogen peroxide/boron trifluoride etherate. (46) A method for preparation of  $\alpha$  -deuterated acids and alcohols which avoids the use of deuteride reducing agents involves catalyzed deuterium exchange alpha to carbonyl and then cleavage with TFPAA (Eq. 4). (48, 49)

$$CH_3CD_2COCD_2CH_3 \xrightarrow{\text{TFPAA}} CH_3CD_2CO_2H + CH_3CD_2OH$$
(4)  
(64%)

The migratory trend in Baeyer–Villiger oxidations has been attributed to electronic and conformational factors. Groups which can best support a positive charge by induction or hyperconjugation are more likely to migrate. It has also been suggested that migration occurs from a favored rotamer **10**, which has the bulkier group antiperiplanar to the leaving group. (15)



Since methyl is a poor migrator, the Baeyer–Villiger reaction has been used extensively to convert methyl ketones to acetate esters while shortening a carbon chain by two units. (50-54) The method is of broad utility, since methyl ketones can be derived from carboxylic acids (55-60) and methyl-substituted

olefins. (50, 61-64) The Baeyer–Villiger oxidation was utilized to shorten the carbon chain in a synthesis of the alkaloid isoretronecanol (Eq. 5). (65)



Baeyer–Villiger oxidation of methyl ketones has played a major role in a number of novel synthetic transformations. Examples include the introduction of a bridgehead hydroxy group following use of an acetyl functionality in an aldol condensation in the synthesis of gibberellic acid (Eq. 6). (66) The Woodward reserpine precursor



**12**, the acetate of a  $\beta$  -hydroxyester required for a ring-cleavage reaction, was prepared from the  $\beta$  -acetyl compound **11**. (67)



Ether or alcohol oxygen, (61, 68-72) and amine (73) or, less effectively, acylated nitrogen (74) atoms alpha to the carbonyl aid migration and accompanying chain cleavage during peracid reactions. MCPBA oxidation of the acetylfuran derived cycloadduct 13 provided the acetate of a 4-hydroxycycloheptanone hemiketal 14 needed in a stereocontrolled strategy for synthesis of the Prelog–Djerassi lactone and similar macrolide antibiotics.

(75) Oxidation of the acyl  $\beta$  -lactam 15 was part of a synthesis of the penam and carbapenem intermediate 16 from D-allothreonine and *trans*-crotonic acid. (55)



Peracid treatment of acyclic 1,3 diketones can give complex reaction mixtures from  $\alpha$  -hydroxylation, (76) cleavage of both acyl groups, (76, 77) and molecular rearrangements. 78,78a

However, the  $\alpha$  -acyl ester **17**, which lacks an acidic methylene hydrogen, can be converted to an  $\alpha$  -acetyl ester with TFPAA. (79) Reaction of peracid with the enol form of a 1,3-dicarbonyl compound is suppressed by the  $\alpha$  -directing ether substituent in ethyl 4-ethoxy-3-ketobutyrate, and diester **18** is obtained with MCPBA. (79a)



A novel method of directed chain shortening by an  $\alpha$  substituent involves initial introduction of a formyl group alpha to a ketone and subsequent oxidation with TFPAA (Eq. 7). (80) Acidic 30% hydrogen peroxide treatment of an  $\alpha$  -acetyl cyclic ketone results in a ring-contracted carboxylic acid (Eq. 8). (81, 82)





A rare example of partial epimerization of acetyl prior to oxidation has been observed for the sodium bicarbonate catalyzed MCPBA reaction with the hindered cyclopentyl substrate **19**. A mixture of *cis* and *trans* acetates was isolated. The *trans*-acetyl isomer of **19** reacts normally. (83)



Complementary to the use of methyl as a nonmigrating group is the use of *tert*-butyl as a preferentially migrating ligand. (84) Normally, oxidation of  $\beta$  -hydroxy methyl ketones gives preferential migration toward the hydroxy group to form 1,2-diol monoesters. (85) However,  $\beta$  -hydroxy *tert*-butyl ketones oxidize to *tert*-butyl esters of  $\beta$  -hydroxycarboxylic acids (Eq. 9). (86)



The bias against methyl migration has been overcome when migration of one group is retarded. In the oxidation of aminoester **20** the strongly electron-withdrawing ester and *N*-acyl groups decrease the migratory ability of the proximate methylene (67:33 bias for methyl migration). (87-90)



Significant amounts of methyl migration have been observed even when the competition is with a secondary alkyl group. Examples include the oxidations of 18-iodo-20-ketosteroid **21** (1:2 methyl:secondary carbon migration) (91) and 3-acetyl-4-methoxycarbonyl steroid **22** (41:32 methyl:secondary carbon migration. (51) Primary alkyl migrates in preference to secondary alkyl in the spiro-amide **23**. (92)







23 (16%) (15%) Migration of the smaller group is a likely consequence of substituent

electron-withdrawing effects, since conformational considerations should have resulted in migration of the bulkier group in these highly crowded substrates. (15) Nevertheless, there is one example in which crowding favors methyl migration (Eq. 10). (93)



Migration can be enhanced by a  $\beta$  -silicon substituent, and the proximal

primary alkyl group of **24** migrates in preference to the distal secondary one. The migratory aptitude of  $\beta$  -trimethylsilylethyl is intermediate between that of secondary and tertiary alkyl groups. (94)

 $(CH_3)_3Si(CH_2)_2COC_3H_7-i \qquad \frac{MCPBA, Na_2HPO_4}{CH_2Cl_2} \qquad (CH_3)_3Si(CH_2)_2O_2CC_3H_7-i \quad (53\%) \\ + \quad (CH_3)_3Si(CH_2)_2CO_2C_3H_7-i(27\%)$ 

Chemoselective Baeyer–Villiger oxidations can occur in the presence of amino acids, (95, 96) amines, (97) pyridines, (98, 99) or anilines. (97) However, 3-acetylpyridine forms only the *N*-oxide with MCPBA. (100) Chemoselectivity in the presence of olefins depends upon structure and oxidizing agent. Chemoselective olefin oxidation of non-conjugated acyclic enones with organic peracids is generally faster than the Baeyer–Villiger reaction. (101-104) Electron-poor olefin **25** undergoes a Baeyer–Villiger reaction with TFPAA. (105) A reactive double bond can be protected as its dibromide, as in the oxidation of the steroid **26**. (104) Basic hydrogen peroxide, which doesn't attack isolated olefins, cleaves the isopropyl group of **27** in preference to the tertiary substituent bearing a carboxylate anion. (106)



Carbonyl group selectivity is observed for MCPBA oxidation of a side chain acetyl in preference to a hindered ring carbonyl in cyclic ketone **28** (107) and hindered 11-ketosteroids. (108, 109) However, the ring carbonyl of **29** reacts. (110) Deketalization of **30** and peracetic acid oxidation of the derived cyclobutanone occurs in preference to oxidation of the side-chain acetyl. (111)



#### 3.1.1.2. Oxidation of Aryl Alkyl Ketones

Aryl alkyl ketones can undergo Baeyer–Villiger oxidation with migration of either substituent depending upon the functional groups on the aryl ring, structure of the alkyl group, and choice of oxidizing reagent and conditions. (2) Relative migratory aptitudes for phenyl alkyl ketones using buffered TFPAA are tertiary > secondary = benzyl > phenyl > primary > methyl. (15, 112)

Substituents on an aryl group slightly decrease the amount of aryl migration as shown in Table 2. (15, 28, 29, 113) The large preference for methyl migration over an *o*-nitrophenyl group could be related to partial participation by nitro group oxygen in cleavage of the O - O bond to form an intermediate peroxide **31**. The methyl group, but not the aryl ring, can achieve the proper *anti* alignment required for the migration step. (113)



| R<br>COCH <sub>3</sub>          |                   |              |         |  |  |  |  |
|---------------------------------|-------------------|--------------|---------|--|--|--|--|
| Substituent R                   | Aryl Migration (% | 5) Yields (% | 6) Ref. |  |  |  |  |
| p-NO <sub>2</sub>               | 87                | 67           | 15, 113 |  |  |  |  |
| <i>m</i> -NO <sub>2</sub>       | 63                | 100ª         | 113     |  |  |  |  |
| o-NO <sub>2</sub>               | 6                 | 38           | 113     |  |  |  |  |
| Н                               | 100               | 100          | 113     |  |  |  |  |
| CI                              | 97                | 36           | 15      |  |  |  |  |
| CF <sub>3</sub>                 | 82                | 73           | 113     |  |  |  |  |
| CO <sub>2</sub> H               | 97                | 86           | 113     |  |  |  |  |
| CO <sub>2</sub> CH <sub>3</sub> | 97                | 77           | 113     |  |  |  |  |
| OCH <sub>3</sub>                | 88                | 75ª          | 113     |  |  |  |  |
|                                 |                   |              |         |  |  |  |  |

**Table 2. TFPAA Oxidation of Substituted Acetophenones** 

<sup>a</sup>The yield was determined by titration.

Weaker peracids afford greater reaction regioselectivity. For phenyl cyclohexyl ketone the weaker peracid peracetic acid (10% phenyl migration) is more selective for aryl migration than is TFPAA (20% phenyl migration). (15) Sodium perborate is selective solely for aryl migration with *p*-methoxy-, *p*-bromo-, *p*-phenyl-, or *p*-methylacetophenone. (114) Steric effects have been studied for the Dakin oxidation of *o*- and *p*-acylphenols with hydrogen peroxide/sodium hydroxide. Larger alkyl groups on the carbonyl slow the reaction. (115)

The preference for aryl over primary alkyl migration allows acylated aromatic rings to be converted to phenols. (116, 117) The oxidation of a C-2 acyl group on an aromatic A-ring is chemoselective in the presence of a steroidal 17-ketone. (118, 119) A two-step procedure of acylation followed by Baeyer–Villiger oxidation has been used to convert L-tyrosine to L-dopa (Eq. 11). (95) It was necessary to use the chloroacetyl group in order for the Baeyer–Villiger reaction to proceed as desired to prepare the oxygenated indole ring **32**. (120, 121)



When oxidations of acetophenones are carried out using *tert*-butylhydroperoxide/potassium hydroxide in chlorobenzene, benzoic acids derived from preferential primary, secondary, or tertiary alkyl migration are obtained rather than phenols. Unlike the peracid mediated Baeyer–Villiger oxidation, electron-withdrawing substituents on the aryl ring increase the reaction rate. Diaryl ketones do not undergo the oxidation. The reaction does not involve radicals since there is no induction period and no inhibition by the radical scavenger arsenious acid. (122-124)

#### 3.1.1.3. Oxidation of Diaryl Ketones

In the cleavage of unsymmetrical diaryl ketones the more electron-releasing group normally migrates. (2) With mono-*p*-substituted benzophenones the migratory order is  $H > Br > Cl > NO_2$ . (20) An *ortho* effect has been noted; *p*-chlorophenyl migrates in preference to an *o*-chlorophenyl, and an *o*-methylphenyl hinders migration relative to phenyl. An *o*-methoxyphenyl group still migrates preferentially. (125) A dibenzocyclobutane migrates in preference to phenyl. (126, 127)

#### 3.2. Reactions of Monocyclic and Spirocyclic Ketones

Oxidation of cyclic ketones to lactones is useful in the synthesis of heterocycles as shown by the formation of **33**, a precursor of the carbohydrate daunosamine, (128) and **34**, a precursor of the cyclic ether ring of zoapatanol. (129)



An extensive use of the Baeyer–Villiger reaction is in the stereocontrolled synthesis of carbon chains by ring opening of the lactones derived from stereoselectively functionalized cyclic ketones. (130-142) By this method chiral 2-deuterio-2-tritioacetic acid was synthesized from the chiral ketone **35**. (143) In the total synthesis of erythronolide **B** regioselective ring opening of a substituted cyclohexanone **36** provided the hydroxyacid precursor **37**, (144) and a stereocontrolled synthesis of the diester side chain of integerrinecic acid used the major isomer **39** formed upon oxidation of the cyclopentanone **38**. (145)



Cyclobutanones are especially reactive and can be ring expanded not only with customary organic peracids, (146) but also with hypochlorous acid (147) or alkaline hydrogen peroxide at room temperature. (148) Rates of oxidation of some cyclic ketones with perbenzoic acid are shown in Table 3. (149) The effect of bulky substituents near the carbonyl is to lower the rate by decreasing the equilibrium constant for formation of the Criegee intermediate (Eq. 1). Steric effects account for the selective oxidation of the side-chain carbonyl in ketone **28**, (110) but the ring ketone in the *trans*-monomethyl ketone **29**. (107) The oxidation rate for the medium ring cyclodecanone is retarded relative to the rates for cyclohexanone or cyclopentanone.

| Table 3. Oxidation of Selected Ketones with Perbenzoic Acid (25°, |
|-------------------------------------------------------------------|
| Chloroform)                                                       |



| Cyclopentanone            | 2.2  |  |
|---------------------------|------|--|
| 3-Methylcyclopentanone    | 1.4  |  |
| Cyclohexanone             | 15.8 |  |
| 2-Methylcyclohexanone     | 7.5  |  |
| 2,2-Dimethylcyclohexanone | 5.0  |  |
| 3-Methylcyclohexanone     | 12.2 |  |
| 4-Methylcyclohexanone     | 19.2 |  |
| 4-tert-Butylcyclohexanone | 27.7 |  |
| 2-Chlorocyclohexanone     | 0.4  |  |
| Cyclodecanone             | 0.1  |  |
|                           |      |  |

The regiochemistry of oxygen insertion follows the principles set out for oxidation of open-chain ketones. There is a customary preference for migration of the  $\alpha$  substituent which has the most alkyl substituents. This is true for ring sizes of four, (146, 150-153) five, (128, 133, 134, 154-166) six, (110, 129, 135, 137, 138, 140, 167-173) seven, (174) nine, (131) and twelve carbons. (175-178) An  $\alpha$  -phenyl group facilitates migration, (179-182) as do  $\alpha$ -benzyl (183) and  $\alpha$ -allyl groups. (102, 120, 130, 184) In contrast to the preference in openchain ketones, the major product **41** isolated in the permaleic acid (PMA) oxidation of **40** is formed by migration of the spirocyclopropyl carbon. (185) The spiro carbon also migrates in  $\alpha$  -spirocyclobutanones, (148, 186-193) even if electron-withdrawing  $\beta$  -bromo, (194)  $\beta$  -hydroxy, (194, 195) or  $\beta$  -*tert*-butyldimethylsilyloxy (194, 195) groups are present on the adjacent ring.



Steric hindrance toward attack by peracid on the carbonyl group can stop oxidation. Although 2-chloro-2,4,4-trimethylcyclobutane-1,3-dione reacts with peracetic acid, no reaction occurs if the 2 methyl is replaced by isopropyl. (153) The medium ring compound cyclodeca-1,6-dione is unreactive with MCPBA

after 31 days at 25° or 45 hours at 45°. (196)

Migration is favored by  $\alpha$  -ether (197, 198) and  $\alpha$  -acetate (199, 200) groups, and an  $\alpha$  -trimethylsilyloxy group directs migration in preference to a methyl group in **43**. (197) An  $\alpha$  -*N*-methyl-*N*-tosyl group (198a) is directing in the same manner as the imide group is directing in the oxidation of **44**, (201) while the  $\alpha$ -amino group of **45** facilitates cleavage of the ring. (73) An  $\alpha$  -chloro group normally retards migration. (153) If TFPAA is the oxidant, 2-chlorocyclohexanone gives an  $\alpha$  -chlorolactone, (201) but adipic acid, which arises by cleavage at the chlorine bearing carbon, is formed using perarsenious acid on polystyrene. (182)



Cyclic  $\alpha$  -acyl ketones undergo ring contraction and ring cleavage reactions with neutral or basic hydrogen peroxide; (78, 202-204) Peracetic acid converts **46** to **47**. (205) The electron-withdrawing  $\alpha$ -ester substituent in **38** does not block regioselective Baeyer–Villiger oxidation toward the alkyl group to give **39**. (145, 206)



The directing effect of a  $\beta$  -trimethylsilyl group (139, 207) is impressive as shown by the totally regioselective formation of lactone **48**. (208, 209) Silyl lactones are useful in the synthesis of olefinic esters and acids. (94) A  $\beta$  -alkoxycarbonyl substituent does not retard migration of the proximal alpha carbon in the peracetic acid oxidation of ketone **49**. (37) The  $\beta$  -carboxylic acid in ketone **8** effects an intramolecular Baeyer–Villiger



reaction via **9** to give **50**; only the distal methylene in **9** can assume the proper orientation for migration. (37) Oxidation of the *tert*-butyldiphenylsilyl ether of  $\alpha$ -hydroxymethylcyclopentanone (209a) and ketone **51** with MCPBA both occur with migration toward the  $\beta$  -hydroxy group, (166) while  $\beta$  -hydroxyketone **52** gives solely lactone derived by migration of the methine away from the  $\beta$ -hydroxy group. (209b) Hydrogen peroxide results in  $\beta$  -elimination and cleavage of 2-aminomethylene ketones at the 2 position, (158) but oxidation can proceed further as in the conversion of 2-isopropoxymethylcyclohexanone to adipic acid. (204) The directing effect of a  $\beta$  -phosphine oxide group on a C-2 alkyl side chain of 53, although oxidation results in major C-1 migration to give 54, is affected by the stereochemistry of a methyl group at C-1. (210) The methyl epimer of 53 gives 96% insertion adjacent to the side chain. The combined influence of  $\alpha$  -carbonyl and oxygen substituents in ketolactone 56 results in preferential migration of the carbon away from oxygen. (211)



Geometric constraints force migration of the methylene group to give 59 and

A neighboring  $\beta$  -selenium substituent influences the regiochemistry of oxidation of the spirocyclobutanone 57. With hydrogen peroxide in ethanol initial oxidation to selenoxide enables formation of a cyclic peroxide 58.

then lactone **60**. When hydrogen peroxide/potassium carbonate, (212) for which Baeyer–Villiger oxidation is faster than selenium oxidation, or MCPBA, which cannot form a cyclic peroxide, are used as oxidants, the usual bridgehead migrated lactone **61** is obtained. (195, 213)



Chemoselective oxidations of  $\alpha$  -thioether (214, 215) and  $\alpha$  -phenylselenenide (216) ketones occur on the heteroatoms. Vinylsilanes form epoxysilanes (217) and  $\alpha$  -diazoketones form 1,2-diketones with MCPBA. (218) Chemoselectivity favoring Baeyer–Villiger reaction for nonconjugated enones depends upon the relative reactivities of the carbonyl and olefin and the choice of oxidant. (184) Reactive four-membered rings undergo only ring expansion with 30% hydrogen peroxide/sodium hydroxide. (148, 187, 195, 212, 213) Ring expansion is also generally found with cyclobutanones and organic peroxides; (151, 187, 195, 213) however, oxidation of spirocyclobutanone **62** is an exception. (219)



Allylcyclopentanone **63** undergoes Baeyer–Villiger oxidation with MCPBA. (130) Although the dimethylallylcyclopentanone **64** reacts preferentially on the double bond with MCPBA, bistrimethylsilyl peroxide (BTMSP) with boron trifluoride





catalyst affords the lactone **65**. (220) Cyclopentenone **66** also affords mainly epoxide with MCPBA. (221) It has been postulated that steric hindrance provided by an allylic *tert*-butyldimethylsilyloxy group hinders epoxidation and favors Baeyer–Villiger oxidation of ketone **67**. (161) Although 2-allylcyclohexanone undergoes Baeyer–Villiger reaction with peracetic acid, (184) it is necessary to use perseleninic acid to carry out the ring cleavage of ketone **68**. (222)



#### 3.3. Reactions of Fused-Ring Ketones

#### 3.3.1.1. Oxidation of Alicyclic Ketones

Cyclobutanones are reactive under a variety of Baeyer–Villiger conditions, and chemoselective oxidations in the presence of cyclohexanones can be affected with peracetic acid (111) or basic *tert*-butyl hydroperoxide. (223) Lactone formation in the presence of olefins often can be carried out with hydrogen peroxide/acetic acid (224, 225) or limited amounts of organic peracids. (226-229) Reaction of MCPBA, which gives high Baeyer–Villiger selectivity with ketone **69**, (230) provides the prostaglandin precursor **70**. (231) Although not always effective in carrying out the Baeyer–Villiger oxidation, (232) a better method to avoid olefin epoxidation is to use basic hydrogen peroxide (233) or alkyl peroxide solutions, (234) as in formation of the lactone **71**, an eriolanin and eriolangin precursor. (235) Basic hydrogen peroxide is effective for oxidation of a cyclobutanone even in the presence of a conjugated ketone. (187, 236)



The regiochemistry of oxidations of fused-ring cyclobutanones is usually toward the bridgehead. (237) However, nonbridgehead substitution in the cyclobutanone ring by  $\alpha$  -*N*-methyl-*N*-tosyl or  $\alpha$  -methoxy substituents directs oxygen insertion regiospecifically toward the substituent. (198a) Similar attachment of an alkyl group (238) or even a halogen, (239) which in steroids often retards migration of the attached carbon, (240, 241) leads to formation of regioisomeric mixtures. A bridgehead will migrate in preference to a cyclopropyl, (238) or an  $\alpha$  -carbon substituted by an alkyl and a halogen. (242) Several cyclobutanones fused to bridged rings react with basic hydrogen peroxide to give preferentially methylene migrated lactones, (243, 244)

Cyclobutanone oxidations are integral reactions for syntheses of prostaglandins, (231, 233, 237, 245) lactone-annelated steroids, (246)  $\alpha$  -methylene-  $\gamma$  -lactones, (226, 238) and paniculide A. (247, 248) The lactone ring of ginkolide B intermediate **72** is introduced in a regioselective and chemoselective fashion using basic triphenylmethyl hydroperoxide. (249, 250)



Fused-ring cyclopentanones in which the carbonyl is adjacent to a bridge position or an alkyl substituent react with organic peracids to give migration of the more substituted carbon. (251-253) Such oxidations are utilized as part of an approach to cyclohexenones (254) and in syntheses of the lactone moieties of the klaineanone ring system of quassinoids, (255, 256) xylomollin, (257) and lineatin. (258, 259) Lactone ring openings of substituted fused five-membered rings are involved in stereocontrolled syntheses of sesquifenchene and epi- $\beta$ -santalene, (260) precapnelladiene, (261) damsin, (222, 262) alpinigenine, (263) sarracenin, (227) and thienamycin. (264)

If the carbonyl group in fused rings is flanked by two methylene groups, the preferred regioisomer upon oxidation in the absence of overriding electronic considerations results from movement of the bond which best relieves steric strain in the Criegee intermediate. This usually results in migration of the group nearest the more highly substituted carbon. (265) Thus, A-nor-2-keto-steroids prefer migration of C-1 (70–100%) (Eq. 12). (266-268) Attack of peracid on the less–hindered  $\alpha$  face of the carbonyl



of **73** provides the Criegee intermediate **74**. Either C-1 or C-3 can orient *anti* to the peroxide bond, but there is greater relief of nonbonded interactions between the hydroxy and the bridgehead methyl when C-1 migrates. (267)

An exception in which the methylene group farthest from a tertiary bridgehead carbon migrates is the MCPBA oxidation of ketone **75** to give lactone **76**. (269, 270) The adverse 1,3-diaxial steric interaction between the C-12 methylene and the axial C-10 methyl group encountered upon migration of bond **b** to give **77** is absent in **78**, formed by migration of bond **a**.



The Baeyer–Villiger cleavage of stereoselectively substituted fused six-membered rings, followed by lactone ring opening, results in a stereocontrolled route to side chains. Ring opening of lactone **79** is used in a synthesis of eriolangin and eriolanin, (223) other examples of this method include syntheses of glycinoeclepin A (271) and ivangulin. (272)



The Baeyer–Villiger procedure has been applied to steroids with carbonyl groups at all possible ring positions. If there are no heteroatom substituents on the steroid or if the heteroatom substituent is far removed, then the major product of oxidation is derived from migration of the more substituted ligand. With carbonyl groups at C-1, C-4, C-6, C-7, C-11, C-12, C-13, and C-17 this results in preferential insertion of oxygen at a bridgehead position. Single regioisomers are reported except for some C-6 (273) and C-17 (274) ketones. Although single regioisomers are often reported, careful study of ketones flanked only by methylene groups indicates mixtures with insertion of oxygen mainly toward C-1 (75%) for 2-ketosteroids and primarily (90%) toward C-17 for 16-ketosteroids. (267, 275) Although 3-ketosteroids show little regiochemical preference upon oxidation, (241, 275) an *n*-propyl group at C-4 is sufficient to impart total regioselectivity (Eq. 13). (276)



The normal preference for oxidation of cyclopropyl ketones is primary > cyclopropyl. (42, 45) However, the cyclocholestan-6-one **80** undergoes oxygen insertion next to the cyclopropyl group. (275, 277)



Cholestan-3-one has reactivity toward perbenzoic acid similar to that of cyclohexanone. (149) The rates of oxidation of steroidal ketones with perbenzoic acid show that a 3-ketosteroid reacts 30–80 times faster than a 17-ketosteroid, which reacts about twice as fast as a 20-ketosteroid. (149) Chemoselective oxidation of 5-  $\alpha$  -cholestan-3,6-dione **81** introduces a single oxygen next to C-2. (278) The pregnan-7,20-dione **82**, a precursor of 7-oxaprogesterone, reacts only at the C-7 carbonyl, (279) and the D-homoetiocholan-11,17a-dione **83** reacts only at the C-17a. (280) A 3,17-diketo-4,5-dehydrosteroid





reacts only at C-3 with perbenzoic acid, (281) and a 12,20-diketosteroid **85** reacts only at C-12. (282, 283)


When a 4,4-dimethyl substituted 3-ketosteroid, or similar fused system, is treated with peracetic acid in the presence of boron trifluoride an exhaustive oxidation occurs (Eq. 14). (284) The method is useful since the lactone formed can be used to make conjugated ketones. (251, 284, 285)



Heteroatom substituents at the  $\alpha$  position to the carbonyl have a marked effect upon the regiochemical outcome of Baeyer–Villiger oxidations of fused ring systems. An  $\alpha$  -bromine atom usually retards migration of the attached carbon; this effect, as shown with bromoketone **86**, is the basis of a method for preparing regioisomerically pure lactones from 3-ketosteroids. (240, 241, 266, 286) Insertion of oxygen



adjacent to a bromine-containing bridgehead has been reported to 5-  $\alpha$  -bromocholestan-6-one (287) and the stigmastan-6-one **87**. (288)



Relative to cholestan-3-one,  $\alpha$  -2-bromocholestan-3-one (88) reacts 13 times slower and 2,2-dibromocholestan-3-one (89) reacts two times faster. The equatorial  $\alpha$  bromine in the plane of the carbonyl decreases the polarity of the carbonyl bond and hinders reaction, while the axial  $\beta$  bromine facilitates reaction, since orbital interaction stabilizes a positive charge at the adjacent carbonyl. (149)



An acetate ester  $\alpha$  to the carbonyl in competition with a methylene group *generally* directs migration of the attached carbon, (289-291) as shown by the reaction of the 2-acetylcholestan-3-one (90). (199) An acetate-substituted carbon also migrates over a



secondary bridgehead carbon. (292) A tertiary bridgehead carbon usually migrates in preference to a carbon attached to an acetoxy-substituted carbon as in the 16-acetoxyandrostanone **91**. (293, 294)



Migratory preferences with  $\alpha$  hydroxy groups present are difficult to predict. A bridgehead 5-  $\alpha$  -hydroxy group facilitates migration in a 3-acetoxy-6-ketosteroid, (295, 296) but not in the oxidation of 3-chloro-5-  $\alpha$  -hydroxycholestan-6-one (92), in which a methylene-migrated lactone 93 is the

major isolated product. (288) Migration of a secondary carbon rather than a hydroxy-substituted carbon has been reported. (266)



An  $\alpha$  ether in the form of an epoxide normally facilitates migration; (297, 298) however, when basic hydrogen peroxide is used as oxidant, C-1 migrates in a 2-keto-3,4-oxido-A-norsteroid. (299) Regioselective migrations occur when both adjacent methylenes have ether or ketal oxygen substituents; however, no clear pattern to predict migration has emerged. (300, 301)

*C*-16-  $\alpha$  -Phenylseleno ketones, such as **94**, (109) undergo rapid Baeyer–Villiger oxidation with regioselective bridgehead migration and selenoxide elimination when treated with 30% hydrogen peroxide. The active oxidizing agent is probably a peroxyseleninic acid generated in situ. (302)



A ketal oxygen at position C-5 of a 3-ketosteroid directs migration away from the proximal methylene, (303) but the  $\beta$  -hydroxy ketone **95** gives migration of both methylene groups. (304, 305) The  $\beta$  -hydroxy and  $\beta$  -*N*-acyl substituents of ketone **96** do not block favored migration of the secondary bridgehead position. (85)



The tendency for bridgehead migration in 6-ketosteroids is reduced by electron-withdrawing  $\gamma$  -halogen, (277, 306-308) hydroxy, (306) or acetoxy (273, 306, 309, 310) substituents at C-3. (287, 303) The  $\gamma$  -chloroketone **97** affords a mixture of products from both bridgehead and methylene migration. (306) Electron withdrawal by 3-halo, 3-acyloxy, or 3-hydroxy substituents sometimes reduces the rate of MCPBA oxidation of 6-ketocholesterols. Relative to 6-ketocholesterol, a 3-  $\alpha$  -chloro, 3-  $\beta$  -hydroxy, 3-  $\beta$  -acetate, or 3- $\beta$  -bromo substituent cuts reaction rate in half while 3-  $\beta$  -chloro or 3- $\beta$  -2,2-dimethylpropionate groups have neglible rate effects. (311)



A systematic study of the effects of remote  $\beta$ ,  $\gamma$ , and  $\delta$  oxygen containing substituents on the regiochemistry of buffered TFPAA oxidations of 5-  $\alpha$ -cholestan-6-one derivatives showed a minor percentage of migration of the C-5 bridgehead in all cases. (273) Since methylene migration dominates, the naturally occurring lactone brassinolide (99), a plant growth promoter, can be prepared from ketone 98. (312, 313) The regiochemistry of migration is catalyst dependent, since bridgehead migration to give lactone 100 is preferred if the oxidation of 98 is performed with TFPAA in methylene chloride with 1% sulfuric acid/10% acetic acid. (314)



## 3.3.1.2. Oxidation of Benz-Fused Ketones

Psoralen (102) can be prepared from benz-fused ketone 101 by a regioselective migration of the aryl group over a primary methylene. (315) The Baeyer–Villiger procedure can be used to introduce an oxygen functionality at C-11 of structures similar to ketone 103 by ring opening of the derived lactone 104, rotation, and Friedel–Crafts acylation at the original C-11. (116)



Preferential migration of an aryl ring is also generally preferred over a secondary carbon. Aryl migration is aided by an electron-donating *o*- or *p*-acetate on the ring. (316) The ring fluorine does not deter aryl migration in ketone **105**, in which alkyl migration may be deterred by the  $\beta$ -carbamate substituent. (317) An example of preferential secondary-alkyl migration is reported, but in extremely low yield. (318) If a ketone is di-benz-fused, the preferential migrating group is the more electron-releasing one. (2, 319, 320)



## 3.4. Reactions of Bridged Bicyclic and Polycyclic Ketones

The ketones in this section, irrespective of unsaturation or heteroatom substitution, are organized according to the structure of the parent bridged hydrocarbon. For polycyclic ketones, the ring system is considered to be the bridged bicyclanone with the smallest sum for the three bridging units, and the ring system is numbered arbitrarily as this bicyclic ketone would be numbered.



#### 3.4.1.1. Oxidation of Bicyclo[2.2.1]heptanones

Baeyer–Villiger oxidation of norbornan-2-one (**106**), which is available in chiral form, (**321**) provides mainly the bridgehead migrated lactone **107**. (**322**, **323**) This lactone serves as a rigid template for further functionalization reactions, and is used in stereocontrolled syntheses of the cinchona, (**324**, **325**) yohimbane, (**325**) emetine, (**326**, **327**) and coryanthe-type alkaloids. (**328**)



Substituted norbornan-2-ones provide access to polyfunctional cyclopentanol derivatives; lactone **108** is an intermediate in the synthesis of verrucarol. (329-331) Oxidation of the prostaglandin precursor **109** provides a mixture of regioisomeric lactones **110** and **111**. (332, 333) The minor methylene-migrated lactone **111** can be removed by preferential hydrolysis with dilute aqueous base. (334, 335) In addition to extensive use in prostaglandin syntheses, (332, 333, 336-353) substituted norbornan-2-ones are precursors of (–)-terrecyclic acid **A**, (354) boschniolactone, (355) triquinacine, (334) a 19-norsteroid, (356) spatane diterpenes, (357) and methyl dihydrojasmonate. (358, 359)

The preference for bridgehead migration in the oxidation of norbornan-7-ones can be altered by substitution at C-3 and C-7. (9) A single methyl group at C-3 results in a 1:1 mixture of bridgehead and nonbridgehead migrated lactones; (360) the formation of mainly lactone **114** from fenchone (**112**) has been attributed to greater relief of eclipsing interactions in the Criegee intermediate **113** for movement of C-3. (361, 362)







Bridgehead migration is favored upon oxidation of

1-methylbicyclo[2.2.1]heptan-2-one. (323, 362) Oxidation of camphor (**115**) also gives preferred C-1 migration. (362-364) However, in those cases where stereochemistry has been unambiguously defined (365) and the bridgehead C-1 is unsubstituted, (362, 363, 366) oxidation of a 7-*syn*-methyl-, (362, 367, 368) 7-*syn*-halogen-, (361, 369) or 7-*syn*-methoxy-substituted norbornan-2-one (**116**) (369) results in preferential methylene migration. An argument that has been



advanced to explain this phenomenon assumes that the 7-*syn* substituent blocks attack of the peracid from the *exo* direction and gives rise to the Criegee intermediate **117**. Migration of the C-3 methylene carbon involves a lower energy transition state proceeding through a chair-like conformation to give **118**, while migration of the C-1 bridgehead carbon proceeds through a less favored boat-like conformation to **119**. (361, 362, 370, 371) In support of this suggestion, if a 7-*syn* substituent facilitates addition of peracid to the *exo* face by hydrogen bonding or other interaction, (358) bridgehead migration is preferred. Accordingly, with MCPBA and a 7-*syn*-carboxylic acid (100%), (371a) 7-*syn*-methoxycarbonyl (95%), (358, 369) 7-*syn*-hydroxymethyl (100%), (371b) 7-*syn*-acetate (60%), (369) or 7-*syn*-p-toluenesulfonyl (369) (62%) group, bridgehead migration dominates.



Norbornan-2-ones with *tert*-amino, (347-371c) acetate, (369) methoxy, (369) or carbomethoxy (369) substituents in the 7-*anti* position, which is beta to the migrating bridgehead and sterically remote from the C-2 carbonyl, undergo bridgehead migration during oxidation. As the electron-withdrawing power of the 7-*anti* substituent increases, (371c) the propensity for bridgehead migration decreases; for example, 7-*anti*-cyano (0% bridgehead) (349) and 7-*anti*-p-toluenesulfonyl (60% bridgehead). (369) A second substituent at C-5-*endo* also has an influence on the regiochemical outcome. (371c) Oxidation of 5-*endo*-acetoxy-7-*anti*-methoxynorbornan-2-one with performic acid gives 70% bridgehead:30% methylene migration. (349)

The choice of peracid and solvent influences regiochemistry in the oxidation of

5-*endo*-benzyloxy-7-*anti*-methoxynorbornan-2-one (**120**) (Table 4). (349) The selectivity for bridgehead migration is greatest with peracetic acid in the weakly acidic acetic acid solvent. Preference for migration of the more electron-donating bridgehead carbon, which can better stabilize the transition state for loss of acetic acid during



decomposition of the reactive Criegee intermediate, assumes greater importance with a poor leaving group.

| Peracid     | Solvent                           | Ratio (121:122) |
|-------------|-----------------------------------|-----------------|
| МСРВА       | $CH_2Cl_2$                        | 55:45           |
| Permaleic   | $CH_2CI_2$                        | 67:33           |
| Perphthalic | CHCl₃                             | 73:27           |
| Performic   | HCO <sub>2</sub> H                | 85:15           |
| Peracetic   | CH <sub>3</sub> CO <sub>2</sub> H | 92:8            |
|             |                                   |                 |

 Table 4. The Effect of Peracid on the Regioselectivity of the

 Baeyer–Villiger Reaction of Norbornan-2-one 120 (349)

The 2-methyl-2,6-methylene-bridged norbornan-2-one **123** inserts oxygen only at the tertiary cyclobutyl carbon to give lactone **124**; an unspecified mixture of regioisomers forms from **125** when the methyl is not adjacent to the carbonyl. (372) The bridged norbornan-7-one **126** undergoes regioselective oxidation to lactone **127**. (373) The electronegative oxetane retards migration. If the 2,6 position of a 7-norbornanone is bridged by a methylene instead of an oxygen, only migration of the cyclobutyl ring occurs. (374) Migration of a secondary bridgehead carbon is preferred over a bridgehead cyclopropyl carbon in the oxidation of the bridged norbornan-2-ones **128**. (340, 343, 375, 376)



The caged structures **129** and 1,4-bis-homocubanone (**130**) are formally bicyclo[2.2.1]heptan-7-one derivatives. (377, 378) Oxidations of related bis-homocubanones with peracetic acid or MCPBA generally insert oxygen preferentially toward the cyclobutane ring, (377-380) although regioisomeric mixtures are reported. (378) Oxidations of caged ketones are often accompanied by rearrangement (Eq. 15). (377, 379) Conversion of the caged structure homopentaprismanone to pentaprismane involves a Baeyer–Villiger oxidation. (381)



The  $\alpha$  -oxygen atom of 7-oxanorbornan-2-one (**131**), in competition with a secondary carbon, directs migration toward the bridgehead. (382-386) Lactone **132** is a precursor of methyl nonactate, (382, 383) and lactones derived by oxidation of 5,6-substituted-7-oxanorbornanones are used to prepare carbohydrates (382, 385-388) and alkaloids. 388a–e



The lactone formed upon oxidation of norbornen-2-one has been used to prepare the cyclopentane ring of brefeldin-A, (389) and substituted norbornen-2-ones have found extensive use in the synthesis of prostaglandins (337, 344, 390-411) and prostacyclins. (412) Chemospecific oxidations with regiospecific bridgehead migration occur with basic 30% hydrogen peroxide (Eq. 16). (390) The preference for migration of the



allylic bridgehead is unaffected by substitution of a 7-*syn* methyl group (60, 262, 405, 413-415) or by 3-methyl groups. (60, 405, 414-416) The hydroxyacid **134** formed upon oxidation of ketone **133** has been utilized in the synthesis of pseudoguaianolides, (405, 414, 415) and similar structures modified at C-7-*anti* and C-3 have been utilized to prepare a helenanolide (405) and estrone. (413)



If the lactone or hydroxy acid derived from a norbornen-2-one is treated with a Lewis acid in an aprotic solvent, an isomeric fused-ring lactone derived by allylic alcohol rearrangement is formed (Eq. 17). (417) This rearrangement has been used to



synthesize lactone **135**, a precursor of the Prelog–Djerassi lactone, (416) and to prepare lactones used in the synthesis of a sterol D-ring and side chain, (413, 414) thienamycin, (418) and the Inhoffen-Lythgoe diol. (60) Oxidation of 7-alkenylnorbornenones gives only epoxidation with MCPBA, but provides allylically rearranged lactones with basic hydrogen peroxide (Eq. 18). (409)



## 3.4.1.2. Oxidation of Bicyclo[2.2.2]octanones

Baeyer–Villiger oxidation of bicyclo[2.2.2]octan-2-ones unsubstituted on the C-3 methylene carbon gives solely bridgehead migration. (371, 419, 420) MCPBA oxidation of ketone **136**, which has two secondary alkyl substituents, nevertheless provides a single unidentified lactone regioisomer. (421) Unlike the *syn*-cyclopropyl isomer in the norbornan-2-one series,



which has an 80:20 preference for bridgehead migration, oxidation of the *syn*-cyclopropyl ketone **137** results in major methylene migration to give **138**. The *anti*-cyclopropyl isomer of **137** and *anti*-cyclopropyl homolog in the norbornan-2-one series give only bridgehead migration. (422) Oxidation of 1-methoxybicyclo[2.2.2]octenones **139** with bridgehead migration and lactone ring opening provides 4,4-disubstituted cyclohexenones **140**. (423)



The bridgehead nitrogen atom facilitates cleavage of 1-azabicyclo[2.2.2]octan-3-one (141) between the carbonyl and adjacent methylene group. (73) The effect of substituent and peracid upon the regiochemistry of migration of 3-substituted 2-azabicyclo[2.2.2]octan-5-ones 142 is shown in Table 5. (424-426) Peracetic acid is more regioselective for bridgehead migrated lactones 143 than is MCPBA. Peracetic



acid oxidation of *N*-tosyl ketone **144** provides lactone **145**, a precursor of isoprosopinine B. (427)



Table 5. Effects of 3-Substituents on the Regiochemistry of Oxygen Insertion of *N*-Carbobenzoxy-2-azabicyclo[2.2.2]octan-5-ones 142 (424)

| R      | R <sup>1</sup>                                                | Peracid            | BH Migration (% of<br>143) <sup>b</sup> | Yield<br>(%) |
|--------|---------------------------------------------------------------|--------------------|-----------------------------------------|--------------|
| Н      | Н                                                             | PAA                | 100                                     | 90           |
|        |                                                               | TFPAA              | 100                                     | 61           |
|        |                                                               | MCPBA              | 69                                      | 89           |
|        |                                                               | PNPBA <sup>c</sup> | 67                                      | 78           |
| Н      | CH <sub>3</sub>                                               | PAA                | 62                                      | 71           |
|        |                                                               | МСРВА              | 50                                      | 85           |
| Н      | $C_6H_5$                                                      | PAA                | 100                                     | 74           |
|        |                                                               | МСРВА              | 60                                      | 83           |
| н      | CH <sub>2</sub> O <sub>2</sub> CC <sub>6</sub> H <sub>5</sub> | , PAA              | 84                                      | 16           |
| Н      | $CO_2CH_3$                                                    | PAA                | 100                                     | 60           |
|        |                                                               | МСРВА              | 18                                      | 70           |
| $CH_3$ | Н                                                             | PAA                |                                         | 0            |
|        |                                                               | МСРВА              | 81                                      | 71           |

| $CO_2CH_3H$ | PAA   | 66 | 57 |
|-------------|-------|----|----|
|             | МСРВА | 38 | 91 |

<sup>a</sup>PAA = 40% PAA/AcOH, NaOAc; MCPBA and PNPBA in  $CH_2CI_2$ , NaHCO<sub>3</sub>; TFPAA = 89% TFPAA, Na<sub>2</sub>HPO<sub>4</sub>,  $CH_2CI_2$ .

<sup>b</sup>BH = bridgehead migrated lactone.

<sup>c</sup>PNPBA = p-nitroperbenzoic acid.

# 3.4.1.3. Oxidation of Bicyclo[3.2.1]octanones

Oxidation of bicyclo[3.2.1]octan-2-ones with PAA (428, 429) or MCPBA gives mainly bridgehead migration; (430) lactone **146** 



was utilized in the synthesis of peristylane. (431) Regioselective bridgehead oxygen insertion is observed upon oxidation of

8-oxabicyclo[3.2.1]octan-2-ones, which have a ketal oxygen at C-3. (301) An  $\alpha$  -ether oxygen adjacent to the bridgehead directs exclusive bridgehead migration for 7-oxabicyclo[3.2.1]octan-2-ones **147** and **148** in competition with 3-alkenyl (3-  $\alpha$  -epoxide) or 3-acetoxy substituents. (432, 433)



Bicyclo[3.2.1]octan-6-ones normally oxidize with regioselective bridgehead migration. (434-436) However, oxidation of brendanone (149), a bridged bicyclo[3.2.1]-octan-6-one, provides a mixture of lactones with TFPAA, (437) and the tetracyclic



ketone **150** gives nearly totally dimethylene migrated lactone **151**. (438) The related pentacyclic ketone **152** prefers cyclobutyl–carbon migration. (439, 440) Major migration occurs away from the bridgehead if a C-7-  $\alpha$  -methyl is introduced onto a bicyclo[3.2.1]octan-6-one; (436)



however, the polycyclic ketone **153** provides mainly the epoxylactone **154**, an intermediate in a synthesis of ryanodol. (441)



Bridgehead migration is favored by an oxygen atom adjacent to the bridgehead, and 8-oxabicyclo[3.2.1]octan-6-ones undergo regioselective bridgehead insertion of oxygen (Eq. 19). (442) Lactone **155** was used to prepare the  $C_{21}$ - $C_{27}$  segment of rifamycin S. (443)



Oxidation of bicyclo[3.2.1]octan-3-one with MCPBA (56 hours, 25°) is slow, (444, 445) and bicyclo[3.2.1]octa-3,8-dione (**156**) reacts only at C-8 with MCPBA. (444) Oxidation of an 8-*N*-methoxycarbonyl analog with MCPBA is successful under forcing conditions after 22 hours at 55° in the presence of the radical inhibitor 2,4,6-tri(*tert*-butyl)phenol. (446) The 3-carbonyl group of 8-oxabicyclo[3.2.1]octan-3-ones is oxidized without difficulty (Eq. 20). Lactone **157** is converted to nonactic acid. (447)



The Baeyer–Villiger oxidation of 8-oxabicyclo[3.2.1]octan-3-ones is used in the synthesis of C-nucleosides. (38, 448-463) The electronic effects exerted by remote  $\gamma$  substituents upon the regiochemistry of oxidations of ketones 158 and 159 is shown in Table 6. An increase in electron-withdrawing ability of the  $\gamma$  group X



results in a decreased tendency of the nearest  $\alpha$  carbon to migrate to an electron-deficient center of a Criegee intermediate. (9, 38, 39) With a C-1 phenyl group oxidation is highly regioselective for migration of the  $\alpha$ -methylene group (Eq. 21). (38)



Table 6. Effects of γ Substituents on the Regioselectivity of Oxidation with 8-Oxabicyclo[3.2.1]nonan-3-ones 158–160 with TFPAA (9, 38)

| Ketone (X Position) $\gamma$ -Substituent X |                                                                             | $\alpha$ -migration (%) |
|---------------------------------------------|-----------------------------------------------------------------------------|-------------------------|
| 158 C-1'                                    | OSi(CH <sub>3</sub> ) <sub>2</sub> C <sub>4</sub> H <sub>9</sub> - <i>t</i> | 55                      |
|                                             | Н                                                                           | 53                      |

|                     | C <sub>4</sub> H <sub>9</sub> - <i>n</i>  | 50 |
|---------------------|-------------------------------------------|----|
|                     | $OCH_2C_6H_5$                             | 48 |
|                     | O <sub>2</sub> CCH <sub>3</sub>           | 35 |
|                     | $O_2CC_4H_9$ -t                           | 31 |
|                     | $O_2CC_6H_5$                              | 28 |
|                     | O <sub>2</sub> CCF <sub>3</sub>           | 23 |
|                     | OSO <sub>2</sub> CH <sub>3</sub>          | 19 |
|                     | OSO <sub>2</sub> CF <sub>3</sub>          | 14 |
| 159 C-6- <i>exo</i> | $OSi(CH_3)_2C_4H_9-t$                     | 30 |
|                     | $OCH_2C_6H_5$                             | 30 |
|                     | O <sub>2</sub> CCH <sub>3</sub>           | 46 |
|                     | $O_2CC_4H_9$ -t                           | 35 |
|                     | $O_2CC_6H_5$                              | 35 |
| 160 C-6-endo        | CH <sub>3</sub>                           | 33 |
|                     | C <sub>5</sub> H <sub>11</sub> - <i>n</i> | 25 |
|                     | C <sub>4</sub> H <sub>9</sub> - <i>t</i>  | _  |
|                     | $C_6H_5$                                  | 39 |
|                     | $CH_2OCH_2C_6H_5$                         | 23 |
|                     | $CH_2O_2CC_6H_5$                          | 40 |

 $CH_2O_2CC_4H_9-t$  34

Steric effects on the regioselectivity of oxygen insertion of 6-endo-substituted-8-oxabicyclo[3.2.1]octan-3-ones 160 are shown in Table 6. (9, 38, 40) Conversions are below 50% with TFPAA after 36 hours at 25° in methylene chloride because of the low equilibrium concentrations of tetrahedral Criegee intermediates; a tert-butyl group blocks oxidation. The bulky substituent decreases the tendency for the nearest methylene carbon to migrate. This finding contrasts with the tendency in steroidal A-ring ketones for the more sterically hindered methylene to migrate preferentially, but can be explained. (267) In order for a group  $R_M$  in a tetrahedral Criegee intermediate to migrate to oxygen with ejection of carboxylic acid two prerequisites must be met. The groups  $R_M$ -C-O-O of 6 should have  $R_M$  and the distal oxygen in an antiperiplanar geometry. Additionally, one of the hydroxy nonbonding electron pairs must also be antiperiplanar to R<sub>M</sub>. These requirements are met by conformation 7, from which the C-2 carbon farthest from the group R can migrate. The conformation which results in migration of C-4 is disfavored by nonbonded repulsion of the group R and the hydroxy hydrogen, which must now be on the same side of the molecule as R. (9, 38, 40)





Bicyclo[3.3.1]nonan-2-one oxidizes with MCPBA (444) or TFPAA to give a bridgehead migrated lactone. (464) Oxidation of ketone **161** with peracetic acid gives mainly lactone **162**, an intermediate in the synthesis of *erythro*-juvabione. (465)



MCPBA does not oxidize bicyclo[3.3.1]nonan-3-one, (444) and the olefin of an internal C-6 double bond or a 7-*exo*-methylene on a bicyclo[3.3.1]nonan-3-one is more reactive than the C-3 carbonyl. (466-468)

Bicyclo[3.3.1]nonan-3,9-dione reacts only at the 9 position. (444) Failure of the 3-keto group in such systems to undergo Baeyer–Villiger oxidation is attributed to steric hindrance toward formation of the tetrahedral Criegee intermediate. In agreement with this reasoning, bicyclo[3.3.1]-nonan-3,7-dione (466, 469) and 7-*exo*-dicyanomethylenebicyclo[3.3.1]-nonan-3-one, (466) in which the olefin is deactivated toward electrophilic addition, are oxidized by MCPBA to lactones. Also, when the 7-*endo*-methylene hydrogen is tied back as in ketones 163 and 164, MCPBA affords lactones. (444) Regioselective cyclopropyl migration to give 165 differs from the reactivity order of primary > cyclopropyl observed



in oxidations of open-chain ketones. (42, 45) Chemoselective and regioselective oxidation of the 9-azabicyclo[3.3.1]nonan-3-one **166** provides the palustrine intermediate **167**. (470)



Bicyclo[3.3.1]nonan-9-ones oxidize with 40% peracetic acid, (471) monoperphthalic acid, (472) TFPAA, (473) or perseleninic acid. (474) A  $\beta$  -hydroxy group in 168 retards migration



of the α bridgehead. (475) Only migration of the distal bond to give lactones 171 is observed during PAA and MCPBA Baeyer–Villiger oxidations of *syn*-X and *anti*-Y 4-substituted adamantanones 169 with strongly electron-withdrawing methoxy, acetoxy, methanesulfonyl, and cyano substituents (Eq. 22). As shown by the percentages



X or Y = OCH<sub>3</sub>, O<sub>2</sub>CCH<sub>3</sub>, OSO<sub>2</sub>CH<sub>3</sub>, CN, Cl, Br, I, C<sub>6</sub>H<sub>5</sub>, H and H

in parentheses, less electron-withdrawing *anti*-Y/*syn*-X chloro (6%/7%), bromo (5%/20%), and phenyl (33%/50%) substituents afford increasing amounts of proximal bond migration product **170**. There is a moderate sensitivity to substituent stereochemistry. lodo (71%/55%) adamantanones **169** give major lactone **170**, but hydrogen peroxide/selenium dioxide is used as the oxidant. The *syn* epimers are generally less reactive. (476)

#### 3.4.1.5. Oxidation of Bicyclo[3.2.2]nonanones

In a synthesis of widiol, the bicyclo[3.2.2]nonan-6-one derivative **172** is oxidized chemoselectively with *bis*-trimethylsilyl peroxide. (477) Bridgehead migration is preferred with MCPBA oxidation of 4-protoadamantanone **173**, a methylene-bridged bicyclo[3.2.2]nonan-6-one. (478)



# 3.4.1.6. Oxidation of Bicyclo[4.3.1]decanones

Bicyclo[4.3.1]decan-8-one retains sufficient conformational flexibility that Baeyer–Villiger oxidation succeeds after 240 hours with MCPBA. (444) Bicyclo[4.3.1]decane-8,10-dione reacts only at the C-10 carbonyl with MCPBA after 24 hours. (444) The tricyclic diketone **174** reacts regioselectively and chemoselectively with MCPBA solely at the less-hindered carbonyl. (479)



# 3.5. Reactions of $\alpha$ , $\beta$ -Unsaturated Ketones

3.5.1.1. Oxidation of Acyclic Conjugated Ketones Epoxidation of acyclic methyl vinyl ketones is often favored over Baeyer–Villiger oxidation. $\beta$ -ionone 175 cannot be avoided using MCPBA or perbenzoic acid, (483, 484) the monosodium salt of 3-heptadecylmonoperphthalic acid in a hexane–water emulsion system gives mainly the enol ester **176**. (484) Oxidation of phenyl vinyl ketone **177** is only partially regioselective and is accompanied by olefin epoxidation; (485) however, persulfuric acid affords a small yield of enol ester. (486)



## 3.5.1.2. Oxidation of Monocyclic Conjugated Ketones

Monocyclic conjugated ketones are of three types depending upon whether the olefin and carbonyl groups are endocyclic or exocyclic to the ring. Cyclohexenyl methyl ketones, which have an endocyclic olefin and an exocyclic carbonyl, give primarily enol acetates and minor amounts of epoxy acetates with MCPBA. (487, 488) As part of a 1,2-ketone transposition method which begins with a 3-ketosteroid, cyclohexenyl ketone **178** is oxidized to



an intermediate enol acetate, which hydrolyzes to 2-ketosteroid **179**. (488) Cyclopentenyl ketone **180** affords only epoxyacetate with MCPBA; (488) however, the fused-ring ketone **181** yields an enol acetate. (489)



Peracetic acid or MCPBA convert *exo*-alkenylcycloalkanones mainly to enol lactones, (106, 490, 491) although minor amounts of epoxy ketone can be formed (Eq. 23). (106) Keto acids usually are isolated from reactions of *exo*-alkylidenecyclopentanones with basic hydrogen peroxide. (158, 179)



The regiochemical outcome of the Baeyer–Villiger oxidation of cycloalkenones, in which the olefin and carbonyl group are parts of rings, depends upon substitution adjacent to the carbonyl group. Vinyl migration generally is preferred over methylene migration to give ring-expanded enol lactones, (492, 493) as shown by the regioselective formation of lactone **182**. (493) Although epoxylactone **184** is formed from secocholestenone



**183** by migration of the tertiary alkyl group, the yield is too low to infer a general principle for competitive migrations. (169)



Potential problems during cycloalkenone oxidations include olefin epoxidation followed by rearrangements of the epoxylactone products (Eq. 24). (485) Further complications



may arise from base-catalyzed retrograde aldol condensations; keto acid **187** has been isolated following oxidation of cyclopentenones **185** and **186**. (485, 494)



# 3.5.1.3. Oxidation of Fused-Ring Conjugated Ketones Benz-fused cyclopentenone **188** affords lactone **189** by preferential vinyl migration. (493) Although the primary



Baeyer–Villiger oxidation product of a cycloalkenone flanked by a methylene group is usually an enol lactone formed by vinyl migration, (495) this product often is accompanied by a related epoxide. (281, 298, 305, 496, 497) An example is the chemoselective conversion of androst-4-en-3,17-dione **190** to enol lactone **191** and epoxylactone **192**. (281)



The general rule of preferential vinyl migration in the peracid oxidation of

fusedring cycloalkenones has exceptions. Major migration of a methylene group in preference to vinyl is observed in the perbenzoic acid oxidation of cholest-4-en-6-one to give an epoxylactone as the only Baeyer–Villiger product (Eq. 25). (498) Oxidation of



+ products from the epoxidized olefin (48%)

A-nortestosterone (**193**) with basic hydrogen peroxide affords epoxidized lactone **194** by way of methylene group migration; (299, 499) the epoxylactone **194** isomerizes upon acid workup to  $\alpha$  -chloro conjugated lactone **195**.



Alternative reactivity modes are potential problems with conjugated ketones. With perbenzoic acid the 3-  $\beta$  -acetoxyketone **196** gives a mixture containing an  $\alpha$  -hydroxy enol lactone **197**, which can arise from epoxidation of the enol form of



the ketone followed by subsequent rearrangement. (500) Hydroxylation of the saturated carbon adjacent to the carbonyl is observed with other steroidal-4-en-6-ones, (303, 501) and with the triterpene 11-keto-  $\alpha$  -amyrone. (502) In other cases only products derived from olefin epoxidation may be formed, as when steroidal 3,5-diene-7-ones react with perbenzoic acid or performic acid. (503, 504)

Further oxidation of aldehydes formed in situ can lead to numerous products. If an initially formed enol lactone undergoes ring opening, peracid can oxidize the revealed aldehyde to an acid. (505) Cholestenone **198** oxidizes to diacid **199** even in



buffered TFPAA. (506) An aldehyde can also undergo further Baeyer–Villiger oxidation to a formate ester. (252, 507, 508) Oxidation of **200** gives lactone **201**, which can be formed



by the conversions: enol lactone  $\rightarrow$  aldehyde acid $\rightarrow$  formate ester acid  $\rightarrow$  alcohol acid  $\rightarrow$  lactone. (507)



Ring opening of enol lactone epoxides in the presence of oxidant can result in a number of time- and peracid-dependent processes. The ring-opened  $\alpha$  -hydroxy aldehyde or ketone can recyclize to a formyl- or acyl-substituted lactone. (298, 504, 508-513) An example is the ring opening and reclosure of the  $\beta$  -epoxy lactone formed during oxidation of cholestenone **202** to the mixture of acetyllactones **203** and **204**. (512)

Secondary oxidations of the  $\alpha$  -hydroxyaldehydes, formed in situ from enol lactone epoxides, can occur. The aldehyde may oxidize to a carboxylic acid (Eq. 26). (514)



Alternatively, as is shown in the oxidation of the unsaturated decalenone **205**, (298) an intermediate formyl lactone **206** can oxidize further to formate ester **207**. (298, 508)



If further hydrolysis occurs at the lactone formate ester oxidation level, the result is a ketoacid, which has lost one carbon as formic acid. (305, 501, 504, 509, 511, 513) An example of this process is the oxidation of the B ring of stigmastenone (208) to ketoacid



**209**. (504) The ketoacid formed in situ is subject to further Baeyer–Villiger reaction; the oxidation of testosterone propionate (**210**) shows conversion of
the B ring to a lactone **211**, which is subject to ring opening and reclosure to lactone **212**. (101, 508, 515, 516)



The presence of a  $\gamma$  halogen can lead to products resulting from an elimination reaction. In the oxidation of bromoenone **213**, formation of an enol lactone followed by hydrolysis and elimination of hydrogen bromide forms an intermediate aldehyde **215**. (516) A second Baeyer–Villiger oxidation and hydrolysis of the enol formate ester





gives intermediate ketone **216**. A third Baeyer–Villiger oxidation with **216**, followed by ring opening and reclosure, provides lactone **214**. A homoallylic halogen or acetoxy group may also undergo elimination (Eq. 27). (504, 511, 513) Oxidation of the lactone



aldehyde **217** and hydrolysis of its derived hydroxyformate ester reveals a  $\beta$  -acetoxy ketone, which loses acetic acid to give enone **218**. (504)

The reactivity of cholest-5-en-7-one with MCPBA is reduced by a factor of 2–3 upon introduction of electron-withdrawing halogen or oxygen substituents at C-3- $\beta$ . (517) A double bond also lowers reactivity, and 3-acetoxycholest-5-en-7-one is 15 times less reactive with MCPBA than 3-acetoxycholestan-7-one. (517) In molecules that contain conjugated and unconjugated ketones, the conjugated ketone often is either unreactive or is epoxidized. For example, in steroidal and triterpene ring systems perbenzoic acid effects Baeyer-Villiger oxidation at a C-3 carbonyl in preference to reaction with a 12-en-11-one functionality, (502) and a side-chain acetyl group can be converted to acetate with MCPBA in the presence of a hindered fused cyclohexenone. (108) Although 3  $\beta$  -acetoxy-16-allopregnene-12,20-dione reacts selectively with perbenzoic acid to give Baeyer-Villiger oxidation of only the 12-ketone with migration of C-13,  $\alpha$  -epoxidation of the C-16 double bond also occurs. (518) A reactive cyclobutanone 219 can be selectively oxidized with basic anhydrous hydrogen peroxide in the presence of an isolated olefin and a conjugated ketone. (236)



 $R = C_6H_5CH_2OCH_2$ 

An example of selective Baeyer–Villiger oxidation of a conjugated ketone in the presence of a nonconjugated carbonyl is the MCPBA oxidation of diketone **220**. The reaction is accompanied by a nonstereospecific epoxidation of the isolated olefin. (519)



## 3.5.1.4. Oxidation of Bridged-Ring Conjugated Ketones

Basic hydrogen peroxide oxidizes the bridged bicyclic ketone **221**, which has an *exo*-alkylidene group, so that cleavage occurs between the carbonyl and vinyl group. (520) However, the bridged ketone **147** affords an epoxylactone **222** in which the oxygen-substituted bridgehead





has migrated. (433) Bridgehead migration without accompanying olefin epoxidation is reported in the MCPBA oxidation of tricycle 223 to the rearranged *exo*-methylenelactone 224, whose putative structure is based upon <sup>1</sup>H NMR spectroscopy. (490)



## 3.6. Reactions of 1,2-Dicarbonyl Compounds

Oxidation of  $\alpha$  -diketones with MCPBA or monoperphthalic acid in inert solvents generally involves cleavage between the carbonyl groups to afford anhydrides, (218, 490, 521-527) while aqueous hydrogen peroxide (31, 528-536) or aqueous workup of peracetic acid oxidations provide carboxylic acids. (537) In alcoholic solvents acid esters can be formed. (538, 539) In the hydrogen peroxide oxidation of *o*-quinone **225** in methanol an initially formed anhydride **226** opens to an acid ester, which undergoes double bond oxidation and conjugate additions to give a mixture of products (Eq. 28). (31, 525)



Oxidation of 2,2'4,4'-tetranitrobenzil (227) with methanolic hydrogen peroxide provides temperature-dependent mixtures of aryl and carbonyl migrated products. More 2,4-dinitrophenol (228) is formed at higher temperatures. (540)



The regiochemistry of oxidation of  $\alpha$  -ketoamide **229**, and numerous aryl derivatives containing electron-donating ether and alkyl groups, as well as electron-withdrawing halogen and trifluoromethyl groups, is dependent upon oxidant. Insertion between the carbonyl groups to give anhydride **230** is observed with 30% hydrogen peroxide/acetic acid/sulfuric acid, while insertion adjacent to the ring to give lactone **231** occurs with persulfuric acid. (541)



In a reaction which is part of the conversion of furan to L-ribofuranosides, tetrahydrofuranyl-  $\alpha$  -ketoesters undergo regioselective migration of the carbon bearing the ring oxygen when oxidized with MCPBA (Eq. 29). (542, 543) Acylphosphites,



phosphorus analogs of  $\alpha$  -keto esters, react with perbenzoic acid primarily to give acylphosphates (Eq. 30). (544)

 $C_{6}H_{5}COP(O)(OC_{2}H_{5})_{2} \qquad \xrightarrow{PBA, \text{ benzene}}_{32^{0}, 3 \text{ d}} \qquad C_{6}H_{5}CO_{2}P(O)(OC_{2}H_{5})_{2} \tag{30}$ 

## 3.7. Reactions of Aldehydes

3.7.1.1. Oxidation of Aryl Aldehydes

Benzaldehydes containing hydroxy groups at the *ortho* or *para* position are converted to phenols by the Dakin oxidation using basic 3–6% hydrogen peroxide (Eq. 31). (96, 545-556) Polycyclic aromatic *o*-hydroxy- or



*p*-hydroxyaldehydes also undergo the oxidation. (557-566) An example of aryl coupling has been reported when heating was employed with a reactive substrate (Eq. 32). (550)



Stronger solutions of hydrogen peroxide (15–30%) are used occasionally, (567-570) however, oxidation to a quinone and ring hydroxylation may occur (Eq. 33) (571) Peracetic acid, (572, 573) which gives major amounts of quinones by overoxidation, potassium persulfate, (574)



and MCPBA (575) are less effective oxidants for o-hydroxy- and p-hydroxybenzaldehydes.

Benzaldehyde or benzaldehydes that have *ortho* or *para* alkoxy substituents are not effectively oxidized by basic hydrogen peroxide to give phenols. (546, 555) They can be oxidized to formate esters or the related phenols with 30% hydrogen peroxide catalyzed by areneseleninic acids, (576-578) acidic 31% hydrogen peroxide, (579) MCPBA, (575, 580-599) TFPAA, (589) dinitroperbenzoic acid, (600) performic acid, (591, 601-604) and peracetic acid. (572, 573, 605-609) A reaction used in the synthesis of mitomycin is shown in

Eq. 34. (584, 590, 591) Quinone formation, which can accompany oxidation of p-methoxybenzaldehydes with peracetic acid, (572, 573) is minimized by the use of lower reaction temperatures and shorter reaction times. (607)



Oxidation of reactive aromatic aldehydes with *O*-allyl side chains is chemoselective for Baeyer–Villiger oxidation with acidic 31% hydrogen peroxide (579) or MCPBA. (610) Epoxidation of an isopropenyl side chain accompanies formate ester formation with MCPBA, but not acidic hydrogen peroxide (Eq. 35). (579) Chemoselective



Baeyer–Villiger oxidations of reactive aromatic aldehydes are preferred over oxidation of pyridyl nitrogen in the presence of acidic 30–35% hydrogen peroxide (Eq. 36). (609, 611)



Steric hindrance toward attack of peracid on the formyl group precludes oxidation of naphthaldehyde **232**. TFPAA and MCPBA, even in refluxing 1,2-dichloroethane, fail to react. (612)



Aromatic aldehydes which have *m*-methoxy (578, 584) or *p*-methyl groups are best oxidized to phenols by 30% hydrogen peroxide containing *o*-nitrophenylseleninic acid (ONPSA). (578) Acidic 31% hydrogen peroxide gives mainly methyl esters with these substrates. (579) Phenols are obtained from benzaldehydes have a *p*-phenyl (577, 578) or fused aromatic rings using *o*-nitrophenylperseleninic acid, (578, 596) MCPBA, (571, 613, 614) or *p*-nitroperbenzoic acid. (615) Benzaldehyde is converted to benzoic acid by potassium persulfate. (574, 589) Similarly, there are no reported Baeyer–Villiger oxidations of benzaldehydes substituted only by electron-withdrawing chloro or nitro groups; acidic hydrogen peroxide converts such aldehydes to benzoate esters. (579)

Electron-rich heterocyclic aldehydes which undergo the Baeyer–Villiger oxidation include 2-formylfurans, (Eq. 37), (616, 617) *N*-(9)-methyl-3-formylcarbazole, (611) and *N*-(6)-methyl-9-formylellipticine. (611)



A coupling product **234** is formed upon oxidation of 3-formylindole (**233**). (546) Electron-poor 3-formylisoquinoline is oxidized to the carboxylic acid by 30% hydrogen peroxide. (618)



## 3.7.1.2. Oxidation of Alkyl Aldehydes

Primary aliphatic aldehydes are oxidized mainly to carboxylic acids by peracetic acid or MCPBA. (589, 619) However, if the  $\alpha$  -carbon is benzylic or secondary, formate ester formation generally is competitive with carboxylic acid formation using MCPBA, (620-622) peracetic acid, (589, 623) or TFPAA as oxidants (589, 619) (Eq. 38). An  $\alpha$  oxygen facilitates formate ester formation (Eq. 39). (298)



# 3.7.1.3. Oxidation of β -Ketoaldehydes

The oxidation of 2-formylcyclohexanones and 2-formylcycloheptanones by hydrogen peroxide affords a mixture of diacid and ring-contracted acid products (Eq. 40). (78, 81, 82, 202-204, 624) Shorter-chain diacids can be



observed. (202, 204, 625) Straight-chain  $\beta$ -ketoaldehydes and 2-formylcyclopentanones give only cleavage products. (202, 203, 624) A method for directed chain cleavage of an ethyl ketone toward the primary substituent involves formylation of its kinetic enolate and oxidative cleavage of the derived ketoaldehyde (Eq. 41). (80)



**3.8. Reactions of**  $\alpha$ **,**  $\beta$ **-Unsatur** $\beta$ **-**unsaturated aldehydes to vinyl formates occurs with peracetic acid, (623, 626) *p*-nitroperbenzoic acid, (627) and MCPBA. (600, 628, 629) An example is shown in Eq. 42. (629) A study of oxidations with 30 and 90% hydrogen peroxide



catalyzed by benzeneseleninic acids found that *bis-o*-nitrophenyl diselenide is the most effective catalyst for vinyl formate formation; the furan ring and double bond are not oxidized under these conditions (Eq. 43). (628) This catalyst–oxidant combination appears to be the favored method for vinyl formate formation when comparisons with MCPBA have been made. (628)



Overoxidation may accompany Baeyer–Villiger oxidation (Eq. 44). (600, 623, 627) Epoxidation of vinyl formate 235 gives epoxyformate 236, which rearranges to ketoformate 237. Further oxidation gives formyloxylactone 238, which hydrolyzes to ketoacid 239. (600) Overoxidation is most usual after long reaction times and if peracids or 90% hydrogen peroxide catalyzed by arylseleninic acids are used as oxidants. Basic hydrogen peroxide converts unsaturated aldehydes mainly to epoxy formate esters, (627) unless the olefinic bond is especially unreactive as in formylazulene. (630, 631)



## 3.9. Peracid Reactions with Ketals and Acetals

Open-chain diethylketals can undergo a formal double Baeyer–Villiger oxidation to carbonate orthoesters upon treatment with MCPBA. (632, 633)

This oxidation results in a chain cleavage at both sides of the carbonyl carbon (Eq. 45). (632) Diethylketals of

$$n-C_{7}H_{15}C(OC_{2}H_{5})_{2}C_{7}H_{15}-n \qquad \frac{1. \text{ MCPBA, }CH_{2}Cl_{2}}{2. \text{ HCl}} \qquad n-C_{7}H_{15}OH \qquad (45)$$

cyclopentanones and cyclohexanones, but not cycloheptanones, are also converted by MCPBA to carbonate orthoesters; (632, 633) these can rearrange to cyclic ethers if the reaction is carried out at reflux (Eq. 46). (632) Although cyclic ketals of ethylene glycol



are stable to this oxidation, bridged oxabicyclo[2.2.1]heptane ketal **240** is oxidized to the ortho ester level. (634, 635)



Cyclobutanone dimethylketal **241** is oxidized chemoselectively to the butyrolactone **242** by aqueous peracetic acid. (111) Dimethylketals of cyclohexanone (232) and cyclopentanone (636) survive MCPBA during the oxidation of oxidizable carbonyl groups.



Although the acetal function of **243** is less reactive than the methyl ketone side chain, (637, 638) in the absence of a competing functionality a variety of acetals can be oxidized by peracids (Eq. 47) (639). Aryl migration has been observed (Eq. 48) (579), but usually esters are formed by loss of the hydrogen atom of the aldehyde. (639) A one-step conversion of  $\gamma$  -lactol methylacetals to  $\gamma$  -butyrolactones utilizes MCPBA in boron trifluoride etherate. (640) The one-step oxidation of diacetal **244** to dilactone **245** is superior to a two-step hydrolysis and oxidation. (641) The oxidation is not useful for  $\delta$  -lactols. (640)









# 3.10. Peracid Reactions with Nitrogen Derivatives of Ketones and Aldehydes

The Baeyer-Villiger oxidation can be carried out on nitrogen-containing ketone derivatives. Oximes of caged ketones are oxidized to lactones with 90% hydrogen peroxide/fuming nitric acid (439) or MCPBA (Eq. 49), (642) and peracetic acid or MCPBA



affords a lactone from the oxime of 5-  $\alpha$  -3-cholestanone. (240, 643) Isoxazolines are oxidized by excess TFPAA or 3,5-dinitroperbenzoic acid to lactones of  $\beta$ -hydroxyketones (Eq. 50). (85) Yields are comparable to those of a two-staged hydrogenolytic cleavage of the isoxazoline followed by Baeyer–Villiger oxidation.



TFPAA effects cleavage of  $\alpha$  -ketooximes primarily to diacids, although some oxidation of the oxime to a nitro group occurs (Eq. 51). (201) Oxygen is also inserted

$$C_{6}H_{5}COC(=NOH)CH_{3} \xrightarrow{\text{TFPAA, Na}_{2}HPO_{4}} C_{6}H_{5}CO_{2}H + C_{6}H_{5}CO_{2}CH(NO_{2})CH_{3} (41\%) (29\%) (51) + C_{6}H_{5}O_{2}CCH(NO_{2})CH_{3} (5\%)$$

between the ketone and imine double bonds upon treatment of 3-oxoindolenine **246** with 35% hydrogen peroxide (644) or MCPBA. (645)

*N*-Benzoyldiarylimes are oxidized to a mixture of phenol and imides (Eq. 52). (646) An attempt to prepare an epoxide of an *N*-acylenamine **247** led to oxidative ring



opening and Baeyer–Villiger oxidation of the released arylaldehyde. (597) *N*-Alkyliminium ions of amines and aryl aldehydes also react with MCPBA to form arylformate esters, most probably as shown in Eq. 53. (647, 648) The



weaker oxidant *N*-benzoylperoxycarbamic acid does not form Baeyer–Villiger products with azines or imines. (649)

## 3.11. Competitive Side Reactions

Reactions of substrates to give products other than those of the normal Baeyer–Villiger oxidation are considered to be side reactions for purposes of this section. Side reactions can occur because of the oxidizing nature of the Baeyer–Villiger reagent, the acidic or basic nature of the reaction medium, or the reaction workup conditions. In prior sections of this review, where applicable, oxidations of double bonds, nitrogen, sulfur, and selenium atoms have been discussed. (2) Baeyer–Villiger oxidation of amine-containing substrates have been reported with and without *N*-oxide formation; for example, the piperidinyl group of

*anti*-7-(1-piperidinyl)bicyclo[2.2.1]heptan-2-one (**247a**) is almost immediately oxidized by MCPBA to its *N*-oxide, whereas a reductive workup using sodium hydrogen sulfite is necessary to obtain the mixture of aminolactones. (**371c**) Separate sections of this review have been devoted to oxidations of carbon–nitrogen double bonds and to ketals and ketones formed by loss of the ketal protective group. Rearrangements and subsequent oxidations during

Baeyer–Villiger oxidation of  $\alpha$ ,  $\beta$ -unsaturated ketones have been discussed in the section devoted to those ketones. Other oxidative and rearrangement processes occasionally observed are discussed here.

There are less common oxidative processes that can accompany or defeat the desired Baeyer–Villiger oxidation. Ketone enolates can undergo olefin epoxidation to provide  $\alpha$  -hydroxyketones. (70, 303, 501, 502) MCPBA is capable of oxidizing secondary alcohols to ketones. (2, 650) Persulfate ion hydroxylates formyl or acyl substituted phenols and arylamines. (651) Benzaldehyde and aromatic ketones can be hydroxylated by hydrogen peroxide catalyzed by antimony pentafluoride–hydrogen fluoride without Baeyer–Villiger oxidation. (652) Occasionally electrophilic attack by MCPBA or peracetic acid occurs at an *ipso* position with resulting loss of the *ipso* substituent (Eq. 54). (320, 537) Furans can undergo oxidative cleavage with MCPBA (Eq. 55). (653-655)



Baeyer–Villiger catalysts can epimerize (63, 154) or rearrange (226) ketone substrates. An example of structural rearrangement in basic hydrogen peroxide is shown in Eq. 56. (656) Sensitive functional groups may be altered. Silyl protecting groups



usually survive treatment with buffered peracids, but partial loss of *O-tert*-butyldimethylsilyl groups is reported; (53, 58) *O-tert*-butyldiphenylsilyl is more stable to peracid. (53) Acid-catalyzed ester exchange between the acid of the peracid and the product ester (58, 657, 658) is minimized by using a buffer such as disodium hydrogen phosphate, common in trifluoroperacetic acid oxidations. (15, 42) Intramolecular ester exchange of hydroxy lactones (355) (Eq. 57) (659) or dilactones (Eq. 58) (660) occurs even in



the presence of buffer, although acid catalysis accelerates the exchange. Lactone formation can follow the basic hydrolysis of an acetate ester. (63, 91, 661) Reactive halides may be converted to esters by displacement with acid nucleophiles (Eq. 59). (282)



The combination of ring strain and acidic catalysts is conducive to formation of cationic rearrangement products from lactones. A commonly observed process upon oxidation of strained cyclobutyl ketones is rearrangement of the derived cyclobutanol ester (658, 662) or lactone (364, 379, 663, 664) to a cyclopropyl carbinyl isomer (Eq. 60). (377)



This process can occur even if the oxidation is carried out with buffered peracid. (658) The rearrangement of cyclopropylcarbinyl esters to 4-butenyl esters (52, 662, 665) can be accompanied by epoxidation of the double bond (Eq. 61). (657)



The combination of a strongly acidic reaction medium and the lactone or ester of a tertiary alcohol may generate a tertiary cation, which can behave in a number of ways. Alkyl shifts (440, 666) and hydride shifts (Eq. 62) (667) can afford rearranged lactones.



Olefins formed by proton loss from cations can be further oxidized by peracid; (667) hydroxylactones **248** (667) and **249**, (668) the latter a side product from camphor oxidation, are examples of rearranged and overoxidized Baeyer–Villiger products.



Oxidation of 4,4-dimethylcholestan-3-one (**250**) with MCPBA in the presence of 10% sulfuric acid/acetic acid results in loss of a methyl group (Eq. 63). (251, 669, 670) This



process, which involves acid-catalyzed ring opening, elimination, and further oxidations, has been modified with boron trifluoride and 40% peracetic acid into a synthetically useful procedure for "exhaustive" Baeyer–Villiger oxidations of  $\alpha$ ,  $\alpha$  -dimethyl fused ring ketones to give lactones (Eq. 64). (284, 285, 622, 671) The latter are convertible to enones. (285)



The  $\alpha$  -bromoketone **251** reacts with basic hydrogen peroxide by a Favorskii process to give a cyclopropanone, which upon trapping with peroxide anion liberates carbon dioxide and olefin **252**. (672) A Favorskii rearrangement of the epoxyketone



**254**, during basic hydrogen peroxide oxidation of  $\alpha$ ,  $\beta$  -unsaturated ketone **253**, provides the ring contracted acid **255**. (673) Hydrogen peroxide causes oxidative fragmentation of  $\alpha$  -*N*,*N*-dialkylaminoketones (Eq. 65). (73) Dunnione (**256**) is somehow fragmented and rearranged by basic hydrogen peroxide to give the diacid **257**. (674)



As discussed in the section on aldehyde oxidations, oxidation to a carboxylic acid can compete with the Baeyer–Villiger oxidation. (584) In the reaction of aryl aldehydes, a further side reaction in the Baeyer–Villiger oxidation is in situ hydrolysis of the formate ester to a phenol, which is further oxidized to a quinone [See Eq. 32]. (571, 572, 675) Less usual is selective demethylation of a methoxy group; the rearranged coumarin **259** is formed during the Dakin oxidation if the acetyl coumarin **258** is preheated with base to open the lactone ring to form a *trans*-cinnamic acid. (676)



Rearrangement, rather than Baeyer–Villiger oxidation, of 1,3-diketone **260** to give acid **261** occurs with basic hydrogen peroxide. (677) Similarly, ring contraction of  $\alpha$  -acyldecalones occurs upon treatment with acidic hydrogen peroxide (Eq. 66). (82)



Cyclic ketones can be oxidized by hydrogen peroxide in the presence of selenium dioxide to give ring-contracted acids; these are accompanied by diacids and hydroxy acids derived by ring opening and further oxidation of the lactones formed by Baeyer–Villiger oxidation (Eq. 67). (678-680)



Rearrangements of Baeyer–Villiger products can be carried out during the reaction workup. The solvolysis of cyclopropyl carbinols prepared by the Baeyer–Villiger reaction has been developed into an efficient and stereoselective route to fused-ring  $\gamma$ -butyrolactones (Eq. 68). (422) Allylic rearrangement of bridged bicyclic lactones is



useful in the stereocontrolled synthesis of substituted cyclopentenes (60, 414-416, 681) and cyclohexenes. (423) The acid-catalyzed rearrangement, although useful in the synthesis of prostaglandin precursors (Eq. 69), (395, 681) can be avoided if the lactone is opened



with base and the carboxylate anion is converted to the ester. (389) Lactones of  $\beta$  -hydroxycyclohexanones are converted to substituted cyclohexenones upon treatment with sodium hydroxide; (423) the reaction is part of a method for  $\alpha$  -carbalkoxymethylation of  $\alpha$ ,  $\beta$  -unsaturated ketones nonenolizable toward the  $\gamma$  position (Eq. 70). (111)



## 3.12. Alternative Methods

#### 3.12.1.1. Biological Methods

Although the biological Baeyer–Villiger oxidation is not included in the tabular portion of this review, microorganisms are capable of converting ketones to lactones. (172, 682-684) Enantioselective enzymatic conversions of mesomeric cyclohexanones to lactones with cyclohexanone monooxygenase (EC 1.14.13.-) are shown in Table 7. (685) The enzyme is extremely efficient at discriminating between the two sides of the carbonyl group. The analogous enantioselective Baeyer–Villiger reaction using chemical rather than biological chiral reagents has not been reported.

| Table 7. Enzymatic | Oxidation | of Selected | meso-Cyc | clohexanones |
|--------------------|-----------|-------------|----------|--------------|
|--------------------|-----------|-------------|----------|--------------|

| Substrate | Product | Yield (%) ee (%) |
|-----------|---------|------------------|
|           |         |                  |



## 3.12.1.2. Non-Peracid Oxidants

The Baeyer–Villiger reaction is normally defined as the conversion of a ketone to a lactone with a peracid or other peroxy compound. The same transformation to lactones or related cleavage products can be effected using other oxidizing agents. Ceric ammonium nitrate (CAN) cleaves cyclopentanones and cyclohexanones; however, the reactions can be accompanied by rearrangements and chain shortening (Eq. 71). (686) Bridged ketones in which the carbonyl is part of a



strained ring can be oxidized to lactones with ceric ammonium nitrate in acetonitrile, (378, 380, 687-689) or lead tetraacetate in pyridine/benzene; (377, 690) however, rearrangements are more prevalent with these oxidants than during Baeyer–Villiger oxidations with MCPBA (Eq. 72) (380) Bridged 1,2-diketone **262** reacts with ceric ammonium nitrate to form a mixture of products. (691)



Chromic acid oxidation of cyclobutanones flanked by a secondary or tertiary alkyl group leads to butyrolactones; (692-695) an example is shown in Eq. 73. (694)



Ozonolysis of vinyl acetate generates formaldehyde oxide ( $CH_2 = O^+ - O^-$ ), which reacts with ketones to give lactones or related cleavage products (Eq. 74). (696) Anodic oxidation of ketone **263** affords mainly rearranged lactone **264**. (697)



#### 3.12.1.3. Oxidation of Ketone Derivatives

Enolsilanes, which can be prepared with regiocontrol, (698, 699) form lactones following reductive workup of the product of ozonolysis. This method is complementary to the Baeyer–Villiger reaction in that it allows oxygen to be introduced at the less substituted carbon. (698, 700) The utility of the method in the preparation of lactone **265** is shown in Eq. 75. Baeyer–Villiger oxidation



of fused ketone **266** with MCPBA favors bridgehead migration and affords an 80:20 mixture of lactones **267** and **265**. (701)



Epoxidation of enol silanes followed by rearrangement leads to  $\alpha$ -acyloxyketones, which are subject to Baeyer–Villiger oxidation. Treatment of enol silane 268 with excess peracetic acid yields in chemoselective and regioselective fashion the acetoxylactone 269. (702)



Methyl ketones generally undergo a two-carbon chain shortening to give acetate esters under Baeyer–Villiger conditions; however, formation of a terminal enol silane and ozonolysis converts a methyl ketone to a carboxylic acid of one less carbon. (698) Enol acetates can be used in place of enol silanes. (703) Fused enol ethers (704-712) and fused furans (713) can be cleaved to ketolactones with MCPBA (Eq. 76). (704)



A reaction which is similar to the Baeyer–Villiger oxidation is the reaction of ketones with ethereal 4–8% hydrogen peroxide and subsequent rearrangement of the bis-hydroperoxide adducts to lactones by pyrolysis in refluxing solvent, (714) or treatment with anhydrides (714, 715) or acids. (716) By this method the C-20 ketone **270** is converted chemoselectively to the 17-acetoxysteroid **271**. (715, 716) Epimerization at C-13



occurs when the bis-peroxide **272** is converted to lactones **273** and **274** by refluxing in xylene or toluene. (714)



Related to the rearrangement of bis-hydroperoxides is the rearrangement sequence of lactones to diols shown in Eq. 77. (717-719) Rearrangement of the acylated  $\alpha$  -alkoxy



hydroperoxide is effected by heating. (720) Since  $\alpha$  -alkoxyhydroperoxides can be formed by ozonolysis of olefins, the method of Eq. 78 can be a useful complement to the Baeyer–Villiger oxidation in Eq. 79. (110)



A mild chemoselective method for oxidative deformylation involves conversion of an aldehyde to a hydroperoxide with oxygen, followed by rearrangement and subsequent reduction. (721) This method was useful for a chemoselective oxidation of the sensitive substrate **275**. (721)



Baeyer–Villiger oxidation of highly electron-rich acetophenones with one or two groups *ortho* to acetyl often is difficult with peracids (Eq. 80). In such cases



phenols often can be prepared by rearrangement of secondary or tertiary benzylic hydroperoxides, which can be derived from the corresponding acetophenone or benzoate ester (Eq. 81). (722, 723) The method also is useful for aromatic substrates, such as



indolines, which undergo secondary reactions at the expense of the Baeyer–Villiger reaction.

## 3.12.1.4. Photochemical Methods

If certain structural requirements are met, it is possible to expand cyclic ketone rings photochemically to hemiacetals, which can be oxidized to lactones. (350, 724-727) Photochemical oxidative expansions of cyclobutanones are aided by  $\alpha$  substitution, and insertion of oxygen occurs with retention of stereochemistry at the migrating center. (229, 724, 728) Irradiation of spirocyclopentanone **276** in the presence of oxygen gives lactone **277**. (724) The method provides lactones



from several 3-oxacyclopentanones and 3-oxacyclohexanones and some bicyclo[2.2.1]heptanon-2-ones. (724) An example of the latter is the rearrangement of bridged ketone **278** to give the lactol **279**. (350) Norrish type I reaction of bridged



ketone **280** followed by oxidation is an alternative to Baeyer–Villiger reaction for the synthesis of the structurally similar lactones **281** and **282**. (355) Although other simple



cyclopentanones and cyclohexanones do not give lactones, irradiation of an  $\alpha$  -hydroxy-6-ketosteroid can result in stereospecific rearrangement to a lactone (Eq. 82). (310)



Mechanistically related to the photochemical ring expansion of ketones to hemiacetals is the thermal decomposition of lactone tosylhydrazones (Eq. 83). The reaction sequence from lactone **283** to ketone **284** is formally a retro Baeyer–Villiger oxidation. (729)


### 4. Experimental Considerations

#### 4.1. Reagents and Conditions

This section describes the preparation and handling of the most frequently used Baeyer–Villiger reagents. At the time of the earlier review of this reaction hydrogen peroxide, permono- and perdisulfuric acid, peracetic acid, perbenzoic acid, and monoperphthalic acid were commonly used as reagents. (2) Since then, two commonly used oxidants have been TFPAA (90%), a powerful oxidant customarily prepared as needed from 90% hydrogen peroxide, and *m*-chloroperbenzoic acid (85%), a stable solid also prepared from 90% hydrogen peroxide. Unfortunately, problems associated with the use and transportation of 90% hydrogen peroxide, which is highly explosive. (730, 731) have eliminated the commercial availability of reagents based upon this oxidant. If necessary, 90% hydrogen peroxide can be prepared by concentration of 30% hydrogen peroxide, (732) or substitution of commercially available 70% hydrogen peroxide (FMC Peroxygen Chemicals Division, Philadelphia, PA) might be attempted. In the alternative, judicious use of the information in this review concerning peracid purification procedures, alternative oxidants, catalysts, and radical scavengers which allow use of higher temperatures, should mitigate the loss of commercial reagents based upon 90% hydrogen peroxide.

In all peroxide oxidations of new compounds the possibility of reactions occurring with explosive violence must be considered. (2) When tetrahydropyranyl ether derivatives were treated with alkaline hydrogen peroxide or 40% peracetic acid followed by washing with 10% sodium sulfite solution, attempted distillation led to detonation without prior warning. (733)

Among the factors that go into choosing a peracid is its reactivity. The oxidizing power of a peracid is related to the strength of the conjugate acid of its leaving group; so the reactivity order of some commonly used peracids is TFPAA > monopermaleic acid, (349) > mono-o-perphthalic acid, (349) > 3,5-dinitroperbenzoic acid, (734) > p-nitroperbenzoic acid (424) > MCPBA = performic acid, <math>(349) > perbenzoic acid > peracetic acid > hydrogen peroxide > tert-butyl peroxide. (7)

#### 4.1.1.1. Trifluoroperacetic Acid (90%)

TFPAA (90%) is prepared prior to use by adding trifluoroacetic anhydride or trifluoroacetic acid (735) to a suspension of 90% hydrogen peroxide in methylene chloride at 0°. (3, 7, 42) Oxidations usually are performed in methylene chloride in the presence of a suspension of disodium hydrogen phosphate buffer, which usually eliminates transesterification as a side reaction. An example of a reaction is known which proceeds faster in the presence of 1 equivalent of buffer than 2 or more equivalents; (79) another

reaction has been found to proceed better if the surface of a Teflon or Pyrex flask was virgin and not etched. (731) Typical reaction temperatures range from 0° to reflux, and reaction times are from a few minutes to several hours. There is no loss of active oxygen by TFPAA (90%) after 24 hours at reflux. (735) The TFPAA solutions prepared from 30% hydrogen peroxide have been used effectively; (736) but reactions are slowed. (735)

#### 4.1.1.2. Nitroperbenzoic Acids

Crystalline 3,5-dinitroperbenzoic acid is prepared from 90% hydrogen peroxide and 3,5-dinitrobenzoic acid in methanesulfonic acid. (734) Oxidation of unreactive substrates can be performed by refluxing with this reactive oxidant in halogenated solvents for several hours in the presence of a radical scavenger, 4,4¢-thiobis(6-*tert*-butyl-3-methylphenol). The reagent is comparable in strength to TFPAA (90%), except that no buffers are needed. (734)

*p*-Nitroperbenzoic Acid (PNPBA) is a commercially available (Aldrich) crystalline solid, which can be prepared from *p*-nitrobenzoic acid and 94% hydrogen peroxide. (737-739) Oxidations are performed in halogenated solvents in the presence of a buffer, such as sodium bicarbonate. (424) The problems in manufacture from concentrated hydrogen peroxide may eliminate this peracid from commerce.

#### 4.1.1.3. m-Chloroperbenzoic Acid (85%)

Oxidations with commercially available MCPBA (85%) generally are performed in chlorinated solvents at room temperature for several hours to several days. Some MCPBA oxidations proceed rapidly and in high yields when mixed in the solid state or when stirred in the presence of water, even though the ketone and MCPBA may be substantially insoluble. (740, 741) Oxidation can be effected at 55° in 1,2-dichloroethane if a radical scavenger, such as 2,4,6-tri(*tert*-butyl)phenol, is added. (446) Common buffers utilized include sodium hydrogen phosphate, sodium acetate, and sodium bicarbonate. Catalysis can be effected with either buffer (227) or acids; such as trifluoroacetic acid, (742) methanesulfonic acid, (431) sulfuric acid, (323) or Nafion-H (DuPont), a perfluorinated resin sulfonic acid. (323) MCPBA (99+%) can be prepared from lower strength peracid by washing with phosphate buffer of pH 7.5. (743) MCPBA is exceptionally stable and decomposes less than 1% after 1 year at room temperature. (743) Although widely used formerly, MCPBA (85%) is no longer commercially available. Weaker solutions of MCPBA are available from various vendors. (See monoperoxyphthalic acid, magnesium salt, below.)

#### 4.1.1.4. Monopermaleic acid

MPMA (30%) can be prepared by dissolving maleic acid in dimethylformamide, adding 30% hydrogen peroxide and stirring at 25° for several hours. (349) A

solution of MPMA (30%) in methylene chloride is prepared by reacting 30% hydrogen peroxide and acetic anhydride in methylene chloride and then adding maleic anhydride. (744) MPMA (90%) is prepared by adding finely crushed maleic anhydride to 90% hydrogen peroxide in methylene chloride at 0°. (44, 52) Oxidations are performed in methylene chloride at 25° or at reflux for 1–12 hours. Reactions are nearly as fast as those with TFPAA and no buffer is required. Permaleic acid solutions decompose to the extent of 5% in 6 hours at ambient temperature. (44)

#### 4.1.1.5. Monoperphthalic Acid

The preparation of this acid has been discussed in *Organic Reactions*; (2, 349, 745) a modified procedure involves stirring finely powdered phthalic anhydride with 30% hydrogen peroxide in ether for 24 hours at 25°. (746) A 10% solution of monoperphthalic acid in ether at 3° for 30 days successfully oxidized a hindered acyl group to acetate after MCPBA, perbenzoic acid, and peracetic acid failed. (747)

#### 4.1.1.6. Monoperphthalic Acid Magnesium Salt

Although little has been reported on use of MMPP to perform Baeyer–Villiger oxidations, this peracid is touted as a replacement for MCPBA (85%). (748) MMPP is a non-shock-sensitive crystalline solid, comparable in solid state stability to MCPBA, which contains about 80% of the pure oxidant as its hexahydrate. Baeyer–Villiger oxidations are performed in dimethylformamide or methanol–water at 20–30° for 4–16 hours. (748) The oxidation byproduct, magnesium phthalate, is water soluble.

#### 4.1.1.7. Persulfuric Acid

Preparation of this acid has been discussed in *Organic Reactions*. (2) Oxidations can be carried out in aqueous solutions of persulfuric acid, (541, 749, 750) and in methanol–sulfuric acid mixtures. (41) A stable mixture of potassium peroxymonosulfate, potassium hydrogen sulfate, and potassium sulfate has been described. (574)

#### 4.1.1.8. Performic Acid

Preparation of this acid has been discussed in *Organic Reactions*. (745) Oxidations can be performed by adding 30% hydrogen peroxide to a solution of the substrate in formic acid (349) or in a buffered mixture of formic acid in methylene chloride. (616)

#### 4.1.1.9. Peracetic Acid

Details of the preparation and titration of this acid are given in *Organic Reactions*. (2, 745) Solutions containing approximately 40% peracetic acid are commercially available (Aldrich). Solutions of peracetic acid can be prepared by adding 90% hydrogen peroxide to a mixture of sulfuric acid and acetic anhydride (751, 752) or 30% hydrogen peroxide to 90% aqueous acetic acid. (237) Oxidations are customarily performed in glacial acetic acid in the presence of sodium acetate. (349, 424, 753) Solutions of peracetic acid in acetone or ethyl acetate are used. (754) In a non-Baeyer–Villiger process the oxidizing effectiveness of a mixture of 30% hydrogen peroxide, acetic anhydride, and sulfuric acid is comparable to that reported for 90% hydrogen peroxide in an acetic acid/sulfuric acid mixture. (755)

#### 4.1.1.10. Perbenzoic Acid

Details of the preparation of this acid are given in *Organic Reactions*. (2, 745) Reactions are normally performed in chloroform, methylene chloride, or carbon tetrachloride; *p*-toluenesulfonic acid is often used as an acid catalyst. (306)

#### 4.1.1.11. Hydrogen Peroxide-Base Catalysis

Use of basic hydrogen peroxide in Baeyer–Villiger and Dakin oxidations has been discussed in *Organic Reactions*. (2) Typically 6% hydrogen peroxide and 2 N sodium hydroxide are heated at 40–60° with the aldehyde for 1–12 hours. (545, 549) Baeyer–Villiger oxidations of cyclobutanones and bicyclo[2.2.1]hepten-2-ones are effected using a mixture of aqueous 30% hydrogen peroxide and 10% sodium hydroxide in methanol or methanol–tetrahydrofuran. (190, 195, 397, 415)

#### 4.1.1.12. Hydrogen Peroxide-Acid Catalysis

Sulfuric acid catalyzes oxidation of electron-rich benzaldehydes with 31% hydrogen peroxide in methanol to give phenols. (579, 611) Nafion-H (DuPont), a resin sulfonic acid, catalyzes the Baeyer–Villiger oxidation of cyclopentanones and cyclohexanones with 30% hydrogen peroxide in methylene chloride. Reactions are performed at reflux temperature for 1–36 hours. (323) Cyclobutanones react to give lactones with 30% hydrogen peroxide in the presence of 2,2,2-trifluoroethanol, acetic acid, potassium hydrogen sulfate–methanol, ethanol, or acetonitrile. (756)

#### 4.1.1.13. Alkyl Hydroperoxides-Base Catalysis

Cyclobutanones can be selectively oxidized in the presence of olefins and larger rings with commercially available [Aldrich] *tert*-butyl hydroperoxide and 10% sodium hydroxide in tetrahydrofuran. (272) Simple aliphatic ketones are oxidized to esters with 90% hydrogen peroxide and boron trifluoride etherate at room temperature. (46) Triphenylmethyl hydroperoxide–sodium hydroxide and 10% sodium hydroxide have been used in a similar manner for chemoselective cyclobutanone oxidation. (249, 250)

#### 4.1.1.14. Silylated Peracids

Silylated forms of hydrogen peroxide and persulfuric acid can be prepared from hydrogen peroxide. (757) Triphenylsilyl hydroperoxide behaves similarly to peracids with ketones on contact with basic alumina. (758) Bis(trimethylsilyl) peroxide (521) reacts with ketones in methylene chloride under the influence of trimethylsilyl trifluoromethanesulfonate, (221) stannic chloride, (220) or boron trifluoride etherate as catalysts. (220, 477) Olefins are not attacked.

Bis(trimethylsilyl) monoperoxysulfate is prepared from bis(trimethylsilyl) peroxide. Unlike persulfuric acid, the silylated reagent is soluble in nonprotic and nonpolar media such as methylene chloride. (36, 47) The reagent has general scope; however, it attacks olefins, and lactones may hydrolyze.

#### 4.1.1.15. Benzeneperoxyseleninic Acids

Benzeneperoxyseleninic acid is generated in situ upon adding 30–90% hydrogen peroxide to benzeneseleninic acid or diphenyldiselenide in methylene chloride, tetrahydrofuran, or chloroform. (222, 578, 600, 628) A phosphate buffer has been used. (222) Reaction times vary from an hour to several days at 25–40°. The reagent prepared using 30% hydrogen peroxide has proven successful when 40% peracetic acid and 85% MCPBA have failed. (222) More powerful oxidants prepared from the corresponding diselenides or seleninic acids include *o*-nitrobenzeneperoxyseleninic acid and 2,4-dinitrobenzeneperoxyseleninic acid. (578, 600, 628) These oxidants are expecially efficient for conversion of aryl aldehydes and ketones into phenols, (578) and for oxidation of  $\alpha$ ,  $\beta$ -unsaturated aldehydes to vinyl formates. (600, 628)

#### 4.1.1.16. Sodium Perborate

Sodium perborate is a cheap, large-scale industrial chemical. It is used for the Baeyer–Villiger oxidation of diaryl, arylalkyl, and cyclic ketones in either trifluoroacetic acid or acetic acid/trifluoroacetic acid mixtures at temperatures of 25–60° for 4–8 hours. (114)

#### 4.1.1.17. Resin-Bound Peracids

Polystyrene-bound phenylseleninic acid is readily prepared from polystyrene. (43) Oxidations are effected by stirring a slurry of the ketone in methylene chloride with the resin and 30% hydrogen peroxide. Less water-soluble ketones are unreactive and appreciably water-soluble products undergo hydrolysis. The polymer can be reused, but it is destroyed by forcing conditions.

Arsenated polystyrene resins catalyze diphasic and triphasic Baeyer–Villiger oxidations of ketones in methanol, dioxane, or chloroform with 30% or 90% hydrogen peroxide at 80°. In water-miscible solvents, medium-size cycloalkanones, steroidal ketones, and branched-chain aliphatic ketones are oxidized. (182) Advantages of the reusable resins are their ease of separation from the reaction, low or no protic or Lewis acid activity, and the low cost and convenience of hydrogen peroxide, which gives water as its byproduct.

Polystyrene carboxylic acids catalyze epoxidations. (759) There are no reports found of their use in Baeyer–Villiger oxidations.

#### 4.1.1.18. Uncommon Oxidants

Sparsely used Baeyer–Villiger reagents which have no reported advantage over more commonly used oxidants include o-sulfoperbenzoic acid in aqueous acetone, (760) p-carbomethoxyperbenzoic acid in chloroform, (761) N- $\beta$ ,  $\beta$ ,  $\beta$ -trichloroethoxycarbonylperoxycarbamic acid (30%) in methylene chloride, (102, 230) and N-benzoylperoxycarbamic acid (92%) in tetrahydrofuran. (102) Molybdenum peroxo complexes stabilized by picolinato and pyridine-2,6-dicarboxylato ligands catalyze oxidation of cyclic ketones by 90% hydrogen peroxide, but yields are poor. (762, 763) Permonophosphoric acid, prepared from 90% hydrogen peroxide and phosphorus pentoxide, oxidizes acetophenones. (28) Effective permonophosphoric oxidations can be performed using 70% hydrogen peroxide; advantages in cost and rate of Baeyer–Villiger rearrangements under easy to run conditions should result in increased use of this peracid as commercial oxidants based upon 90% hydrogen peroxide become unavailable. Inexpensive and commercially available sodium percarbonate in trifluoroacetic acid conveniently and under mild conditions oxidizes aryl and cycloalkyl ketones to esters. (763a)

#### 4.2. The Apparatus

For most reactions it is convenient to use a three-necked, round-bottomed flask equipped with an appropriately sized mechanical stirrer, and, if necessary a thermometer and dropping funnel. In some cases a drying tube may cap the reflux condenser or a gas inlet tube may be used to introduce nitrogen (549) or argon. (764) If long reaction times are anticipated, reactions may be run in the dark to minimize decomposition of the peracid reagent.

#### 4.3. The Workup Procedure

For reactions performed in organic solvents, unreacted peracids generally are decomposed by addition of solutions of sodium bisulfite, sodium thiosulfate, or sodium sulfite. (334, 349, 415, 578) Washing may be continued until a negative starch–iodide test is observed. (445) Insoluble resins and acids formed by decomposition of peracids are removed by filtration. Soluble acids are removed by washing with 10% solutions of sodium bicarbonate or sodium carbonate. Peracids are also removed by washing with these base solutions.

For reactions performed in nonorganic solvents with water-soluble peracids or aqueous hydrogen peroxide, the product is filtered if water insoluble (541) or taken up in an organic solvent, which is then treated as usual. (272)

#### 4.3.1.1. Selection of Reaction Conditions

There is no evidence that alternative methods of introducing reactants (normal or inverse addition) has an effect on the yield of the Baeyer–Villiger oxidation.

For sluggish reactions, it is often advantageous to add additional aliquots of peracid at regular intervals. Use of a buffer, such as sodium acetate, disodium hydrogen phosphate, or sodium bicarbonate, or avoidance of strong acid catalysts will minimize ester exchange and hydrolysis of the esters or lactones. Weaker peracids, such as peracetic acid, generally are more regioselective than stronger peracids, such as MCPBA. (349, 424) A search for analogies in the tabular survey may facilitate the choice of the appropriate experimental conditions.

### 5. Experimental Procedures

5.1.1.1. (2R,3S,22R,23R)-2,3,22,23-Tetrahydroxy-B-homo-7a-oxa-5 α -ergostan-7-one Tetraacetate (Regioselective Oxidation of a Fused-Ring Ketone with 30% Trifluoroperacetic Acid) (736)

To a solution of trifluoroperacetic acid in dichloromethane prepared by adding trifluoroacetic anhydride (3.37 mL) to 30% aqueous hydrogen peroxide (0.6 mL) in dichloromethane (3.7 mL) at 0° was added (2*R*, 3*S*, 22*R*, 23*R*)-2,3,22,23-tetrahydroxy-5  $\alpha$  -ergostan-7-one tetraacetate (100 mg) in dichloromethane (2.5 mL) at 0°. The mixture was stirred at room temperature for 1 hour and then was poured into 2% potassium carbonate solution and extracted with dichloromethane. The extract was washed with water, dried, and concentrated under reduced pressure. The residue was chromatographed on silica gel. Elution with 50% hexane–ethyl acetate afforded 98 mg (96%) of product as a glass: <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>)  $\delta$  5.26 (m, 3  $\beta$  -*H*; W<sub>1/2</sub> = 8 Hz), 5.22 (dd, *J* = 10.5 and 8.4 Hz, 23-*H*), 5.04 (dd, *J* = 7 and 5.4 Hz, 22-*H*), 4.86 (m, W<sub>1/2</sub> = 12 Hz, 2  $\beta$  -*H*), 4.18 (dd, *J* = 10.5 and 8.4 Hz, 8  $\beta$  -*H*), 2.72 (dd, *J* = 10 and 15 Hz, 6  $\beta$  -*H*), 2.08 (s, CH<sub>3</sub>CO), 2.05 (s, CH<sub>3</sub>CO), 2.03 (s, CH<sub>3</sub>CO), 1.98 (s, CH<sub>3</sub>CO), 1.08 (s, 19-CH<sub>3</sub>), 0.66 (s, 18-CH<sub>3</sub>).

5.1.1.2. (endo, endo)-2,5-Dimethyl-3,9-dioxabicyclo[4.2.1]nonan-4-one (90% *Trifluoroperacetic Acid Oxidation of Bridged-Ring Ketone*) (447) Trifluoroperacetic acid, prepared by dropwise addition of trifluoroacetic anhydride (7.1 mL, 50 mmol) to a stirred, ice-cold solution of 90% hydrogen peroxide (0.96 mL, 40 mmol) in 10 mL of dichloromethane (dried over magnesium sulfate and distilled), was added dropwise to a stirred, ice-cold mixture of finely ground disodium hydrogen phosphate (17.0 g, 120 mmol) in 25 mL of dichloromethane containing (*endo*,

*endo*)-*cis*-2,4,-dimethyl-3-keto-8-oxabicyclo[3.2.1]octane (2.95 g, 20 mmol). After the reaction mixture had become too viscous for effective stirring (at approximately half addition of the peracid), the cooling bath was removed and the exothermic reaction was continued. The mixture was stirred for 2 hours at room temperature and then brought slowly to reflux for 15 minutes. The cooled mixture was filtered and the solids were washed thoroughly with dichloromethane. The combined filtrates were washed with water, 3% aqueous sodium bicarbonate, and brine, dried over magnesium sulfate, and concentrated to give an oil which crystallized on standing. Recrystallization from petroleum ether (bp 30–60°) afforded 3.2 g (94%) of product as colorless needles, mp 57–59°; IR ( CCl<sub>4</sub>) 1740 and 1180 cm<sup>-1</sup>; <sup>1</sup>H NMR ( CCl<sub>4</sub>)  $\delta$  1.07 (d, J = 7 Hz, 3H), 1.23 (d, J = 7 Hz, 3H), 1.90 (m, 4H), 2.93 (q, J = 7 Hz, 1H), 4.08 (m, 2H), 4.64 (q, J = 7 Hz, 1H).

5.1.1.3. cis-3-Hydroxymethylcyclopentaneacetic Acid Lactone (Oxidation with 85% m-Chloroperbenzoic Acid) (445)

A mixture of bicyclo[3.2.1]octan-3-one (15 g, 0.121 mol), purified m-chloroperbenzoic acid (35 g, 0.49 mol), (743) and sodium bicarbonate (21 g, 0.25 mol) in 500 mL of chloroform (freed of ethanol by passing over basic alumina) was mechanically stirred in a sealed flask and in the dark for 1 week. During that time, the built-up pressure was periodically released. The mixture was filtered and the solids were washed well with chloroform. The combined filtrates were washed several times with small volumes of cold 10% sodium sulfite solution until it gave a negative test with starch-iodide paper (about 350 mL of the sulfite solution is required), then with cold sodium bicarbonate solution and dried over sodium sulfate. After the solvent was removed the remaining oil was chromatographed on a silica gel column (250 g) developed with a mixture of petroleum ether (bp 30-60°)-chloroform (4:1). Two components identified (IR and NMR) as m-chlorobenzoic acid [recrystallized from ether-petroleum ether (bp 30-60°), mp 156-157°] and starting material (purified by sublimation) were eluted first. The composition of the eluent was then changed to 1:1, and fractions containing the product lactone were pooled and concentrated, leaving an oil that on drying in vacuo became a waxy solid. Recrystallization from petroleum ether (bp 30-60°), including treatment with Norit, gave a total of 10.4 g (61%) of product, mp 125–129°; IR (KBr) 2980, 1725, 1460, 1420, 1390, 1340, 1320, 1260, 1215, 1160, 1090, 1040, 990, 970, 935, 875, 852, 780, 700 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  4.19 (d, J = 3 Hz, CH<sub>2</sub>O), 3.1-2.2 (envelope), 2.2-1.4 (envelope).

#### 8, β 3.1.1.4

β,-Dihydroxy-O-isopropylidene-N-carbomethoxy-3-oxa-9-azabicyclo-[4.2.1<sup>1,6</sup>] nonan-4-one (A Difficult Oxidation under Forcing Conditions Using 85% m-Chloroperbenzoic Acid and a Radical Scavenger) (446)

#### To a solution of 6 $\beta$ ,7 $\beta$

-dihydroxy-O-isopropylidene-N-carbomethoxytropan-3-one (2.52 g, 9.9 mmol) in 60 mL of 1,2-dichloroethane was added 85% m-chloroperbenzoic acid (5.0 g, 29 mmol) and 2,4,6-tri(*tert*-butyl)phenol (20 mg). This mixture was heated to 55° and followed by gas chromatography [Hewlett Packard 700 Laboratory Chromatograph, SE-30 Ultraphase (10% w/w) with Chromosorb W support in 6 feet × 1/8 inch column]. After 22 hours the starting material had disappeared and the solution was cooled to -15° for 30 minutes to precipitate out most of the *m*-chloroperbenzoic acid. The acid was removed by filtration, and the filtrate was washed successively with cold 10% sodium bisulfite (15 mL), cold 10% sodium bicarbonate (3 × 15 mL), and saturated salt solution (20 mL). The organic phase was dried over magnesium sulfate and evaporated off, leaving a partially solidified oil. This was dissolved in anhydrous ether and allowed to crystallize at -15°, mp 117-118°. More product was obtained by adding petroleum ether (30-60°) and cooling to give a total yield 1.6 g (60%) of product; IR (CCl<sub>4</sub>) 3000, 2960, 1755 (lactone), 1725 (urethane), 1455, 1392, and 1382 (*gem*-dimethyl) cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 1.26 (s, 3H), 1.40 (s, 3H), 2.93 (m, 2H), 3.73, (s, 3H), 4.33 (bm, 4H), 4.53 (d,

1H), 4.86 (d, 1H); mass spectrum, m/z 271 (M<sup>+</sup>), 256 (M<sup>+</sup> - CH\_3), 240 (M<sup>+</sup> - OCH\_3), 214, 179, 142.

## 5.1.1.5. Phenyl Acetate (Acid-Catalyzed Oxidation with m-Chloroperbenzoic Acid) (742)

To a solution of acetophenone (120 mg, 1 mmol) in anhydrous dichloromethane (2 mL) was added in one portion technical (80–85%) *m*-chloroperbenzoic acid (449 mg, 2.6 mmol). The suspension was cooled to 0° and distilled trifluoroacetic acid (114 mg, 1 mmol) was added dropwise over 5 minutes. The reaction flask was protected from light and the mixture was allowed to warm to room temperature; the progress of the reaction was followed by silica gel TLC. After 8 hours the mixture was diluted with dichloromethane (2 mL) and washed once each with 10% aqueous sodium sulfite solution (2 mL), saturated aqueous potassium carbonate solution (2 mL), and water (2 mL); dried over magnesium sulfate; and concentrated in vacuo to give 102 mg of pure phenyl acetate (75%).

# 5.1.1.6. Benzyl Benzoate (Solid-State Oxidation with m-Chloroperbenzoic Acid) (740)

A mixture of powdered benzyl phenyl ketone and 2 mol equivalents of powdered 85% *m*-chloroperbenzoic acid was ground with agate pestle and mortar. After 24 hours the excess of peroxy acid was decomposed with aqueous 20% sodium bisulfite and the product was taken up in ether. The solution was washed with aqueous 20% sodium bicarbonate and water, dried over sodium sulfate and evaporated. The crude product was chromatographed on silica gel (benzene–chloroform) to provide benzyl benzoate (97%). For comparison, the oxidation of benzyl phenyl ketone (1 g) with *m*-chloroperbenzoic acid in chloroform (50 mL) after 24 hours afforded benzyl benzoate (46%).

# 5.1.1.7. Isobutyl Acetate (Preparation and Use of 90% Permaleic Acid to Oxidize a Straight-Chain Ketone) (44)

To an ice-cold stirred solution of 11.6 g (0.34 mol) of 90% hydrogen peroxide and 150 mL of methylene chloride was added in one batch 39.2 g (0.4 mol) of freshly crushed maleic anhydride. When the major portion of the maleic anhydride had reacted, the solution was heated to reflux and 20 g (0.2 mol) of methyl isobutyl ketone was added in an equal volume of methylene chloride. When the theoretical amount of peracid had disappeared, as determined by iodimetric titration of aliquots, the solution was cooled, and the maleic acid was removed by filtration. The filtrate was washed twice with 100 mL of 10% sodium carbonate solution, once with 100 mL of 10% sodium bisulfite solution, and once with 100 mL of a saturated sodium chloride solution, and dried over magnesium sulfate. Distillation through a short Vigreux column yielded after

removal of solvent 16.7 g (72%) of isobutyl acetate, bp 115–116°,  $n_{\rm D}^{25}$ 1.3908.

## 5.1.1.8. 12-Hydroxydodecanoic Acid Lactone (Oxidation with 30% Permaleic Acid) (744)

Dichloromethane (1.6 L) and acetic anhydride (1.25 L) were stirred in a 5-L flask fitted with a double-surface reflux condenser and an overhead stirrer and cooled externally (ice water) while 30% hydrogen peroxide (1 L) was added. After 1 hour maleic anhydride (1 kg) was added, the mixture was cooled and stirred for 1 hour, and then the cooling bath was removed, whereupon the temperature rose during 1.5 hours and the mixture began to reflux. External cooling was resumed when needed to moderate the reaction. When little more heat was evolved, cyclododecanone (250 g, 0.62 mol) was added; this did not greatly increase the rate of heating, and when spontaneous refluxing ceased a heating mantle was used to maintain the mixture at reflux for 15 hours. The mixture was then cooled and the separated maleic acid was filtered off. The filtrate was washed in turn with water (3 × 600 mL), an aqueous solution containing 10% each of potassium hydroxide and sodium sulfite  $(2 \times 300 \text{ mL})$ , and then water (600 mL); tests for peroxide were now negative. After being dried (sodium sulfate) the filtrate was evaporated to give the lactone (210.4 g, 77%).

# 5.1.1.9. 6-endo-Benzyloxy-8-anti-methoxy-2-oxabicyclo[3.2.1]octan-3-one and 6-endo-Benzyloxy-8-anti-methoxy-3-oxabicyclo[3.2.1]octan-2-one (Oxidation with 90% Perphthalic Acid) (749)

Phthalic anhydride (0.96 g, 6.5 m mol) was dissolved in dimethylformamide (1 mL) and methylene chloride (1 mL). Hydrogen peroxide (90% in water; 0.17 g) was added to the stirred solution at 40°. After 1 hour, 6-endo-benzyloxy-7-anti-methoxybicyclo[2.2.1]heptan-2-one (0.5 g, 2 mmol) in chloroform (10 mL) was added. After stirring for 9 hours at 40° the solution was filtered and the filtrate was washed with saturated sodium sulfite solution (10 mL), saturated sodium bicarbonate solution (10 mL), and water (4 × 5 mL). The aqueous washings were back-extracted with methylene chloride (2 × 10 mL) and the combined organic extracts were dried and evaporated to give 0.44 g (83%) of a 73:27 mixture of product lactones as an oil, bp 155° (0.001 mm); IR 1740, 952, 930 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>) of the bridgehead migrated 2-oxa-3-oxo-lactone  $\delta$  7.29 (s, C<sub>6</sub>H<sub>5</sub>), 4.50 (m, H-1), 4.44 (s, OCH<sub>2</sub>Ph), 4.28 (m, H-6), 3.87 (br s, H-8), 3.28 (s, OCH<sub>3</sub>), 3.50–2.25 (m, H-4-exo, H-4-endo, H-7-exo), 1.92 (dm, J = 15 Hz, H-7-endo); <sup>13</sup>C NMR ( CHCl<sub>3</sub>) δ 169.44 (s, C-3), 83.40 (d, C-8), 78.59 (d, C-1), 78.43 (d, C-6), 38.48 (d, C-5), 37.00 (t, C-4) 31.23 (t, C-7). The minor methylene migrated 3-oxa-2-oxo-lactone was identified by spectral data; <sup>13</sup>C NMR (CHCl<sub>3</sub>)  $\delta$ 173.33 (s, C-2), 81.19 (d, C-8), 76.90 (d, C-6), 66.40 (t, C-4), 45.14 (d, C-1), 41.59 (d, C-5), 33.33 (t, C-7).

5.1.1.10. Caprolactone (Oxidation with Magnesium Monoperphthalate) (748) Cyclohexanone (314 mg, 3.2 mmol) was added to a stirred solution of magnesium monoperphthalate (1.39 g, 3.6 mmol) in dimethylformamide (15 mL) at 20°. After 16 hours, the mixture was diluted with methylene chloride (50 mL) and aqueous 2 M hydrochloric acid (20 mL) was added. The organic phase was washed with a saturated aqueous solution of sodium bicarbonate and dried over magnesium sulfate. Evaporation of the solvent, after confirming the absence of peroxide, gave the lactone (208 mg, 57%).

5.1.1.11. Methyl 7-Hydroxyheptanoate (Oxidation with Persulfuric Acid) (41) To a stirred mixture of concentrated sulfuric acid (245 mL) and water (98 mL), potassium persulfate (182 g) was added at 10°. With the temperature kept below 5°, methanol (365 mL) and then methyl 8-oxo-nonanoate (100 g, 0.537 mol) was added. After stirring at 5° for 3 hours, the mixture was poured into saturated ammonium sulfate solution (1000 mL) and extracted with ethyl acetate (3 × 500 mL). The organic layers were collected, washed with saturated sodium thiosulfate (200 mL), 5% sodium bicarbonate (2 × 50 mL), and brine (2 × 50 mL), dried with sodium sulfate, and evaporated. Product (80 g, 93%) was obtained as an oily residue, pure according to TLC (silica gel; 6:4 hexane/ethyl acetate), bp 121–123° (1.5 mm); IR (neat) 3450 (broad), 1740 (C = O), 1430 cm<sup>-1</sup>.

## 5.1.1.12. 2-Oxo-2,5-dihydrofuran [2(5H)-furanone] (Oxidation of an Aryl Aldehyde with 30% Performic Acid) (616)

A 1-L two-necked flask, equipped with an effective reflux condenser and a dropping funnel, was charged with furfural (practical grade; 96 g, 1 mol), dichloromethane (500 mL), formic acid (92.1 g, 2 mol), sodium sulfate (100 g), and potassium carbonate (35 g). This mixture was vigorously stirred and 30% hydrogen peroxide (75 mL) was added in one portion (exothermic reaction). Vigorous stirring was continued for 30-45 minutes after which time the mixture refluxed gently. Then, 30% hydrogen peroxide (125 mL) was added dropwise with continued stirring over a 3-hour period. The mixture was allowed to cool to room temperature (10 hours) with still continued stirring. The phases, which separated at once when stirring was stopped, were isolated and the inorganic phase was extracted with dichloromethane (1 × 100 mL). The organic phases were combined and the solvent was removed on a rotary evaporator. Then toluene (200 mL) was added and formic acid was removed by azeotropic distillation. To the residue, toluene (200 mL) was added, followed by the addition of triethylamine (1-2 g), and the flask was allowed to stand for 1 hour. Toluene was evaporated and the residual liquid was distilled in vacuo over a 30-cm Vigreux column to give, after a small forerun of furfural, 43-45 g of 99% pure (GLC) product (50–54%), bp 95–96° (19 mm), 79–81° (9 mm); <sup>1</sup>H NMR  $(CDCl_3) \delta 4.91 (dd, J = 2.2 Hz, 1.7 Hz, 2H), 6.18 (dt, J = 2.2 Hz, 5.8 Hz, 1H),$ 7.58 (dt, J = 1.7 Hz, 5.8 Hz, 1H).

5.1.1.13. 2'-Hydroxybiphenyl-2-carboxylic Acid Lactone (Oxidation with 90% Hydrogen Peroxide/Acetic Anhydride) (751)

To a solution of 135 g of concentrated sulfuric acid and 350 g of acetic anhydride there was slowly added with stirring and cooling 55 mL of 90% hydrogen peroxide. The temperature was maintained below 15°. To this mixture a solution of 100 g (0.56 mol) of 9-fluorenone in 100 mL of methylene chloride was added and stirring was continued for 24 hours at  $-5^{\circ}$ . Addition of 500 mL of water and subsequent boiling for 1–2 hours destroyed excess acetic anhydride and peroxides and removed the methylene chloride. The solid which precipitated on cooling was collected and dissolved in the combined ethereal extracts (3 × 100 mL) from the supernatant aqueous phase. The ethereal solution was washed with 5% sodium carbonate, then brine, and finally dried over sodium sulfate. Evaporation of the solvent (steam bath or flash evaporator) yielded 96 g (89%) of crude lactone, mp 87–89.5°. Two recrystallizations from ethanol (with Norit) afforded 86.2 g (80%) of fine white crystalline needles, mp 93–94°.

### 5.1.1.14. 6-endo-Benzyloxy-8-anti-methoxy-2-oxabicyclo[3.2.1]octan-3-one (Oxidation with 30% Hydrogen Peroxide/Acetic Acid) (349)

To a solution of 5-*endo*-benzyloxy-7-*anti*-methoxybicyclo[2.2.1]octan-2-one (24.6 g, 0.1 mol) in 90% aqueous acetic acid (100 mL) containing sodium acetate (8.2 g, 0.1 mol) there was added 30% hydrogen peroxide (110 mL, 1 mol). After stirring for 30 hours at 50°, sodium sulfite (252 g, 2 mol) was added followed by water (200 mL). The aqueous solution was extracted with chloroform (4 × 100 mL) and the chloroform extracts were washed with water (3 × 100 mL) and saturated sodium bicarbonate solution (150 mL). The aqueous extracts were back-extracted with chloroform (2 × 100 mL) and the chloroform (2 × 100 mL) and the combined organic fractions were dried over magnesium sulfate and evaporated to give 18.3 g (70%) of product as an oil, bp 155° (0.001 mm); IR 1740, 952, 930 cm<sup>-1</sup>; <sup>1</sup>H NMR ( CDCl<sub>3</sub>)  $\delta$  7.29 (s, C<sub>6</sub>H<sub>5</sub>), 4.50 (m, H-1), 4.44 (s, OCH<sub>2</sub>Ph), 4.28 (m, H-6), 3.87 (br s, H-8), 3.28 (s, OCH<sub>3</sub>), 3.50–2.25 (m, H-4-*exo*, H-4-*endo*, H-7-*exo*), 1.92 (dm, *J* = 15 Hz, H-7-*endo*); <sup>13</sup>C NMR ( CHCl<sub>3</sub>)  $\delta$  169.44 (s, C-3), 83.40 (d, C-8), 78.59 (d, C-1), 78.43 (d, C-6), 38.48 (d, C-5), 37.00 (t, C-4), 31.23 (t, C-7).

### 5.1.1.15. 6-(Benzyloxycarbonyl)-2-oxa-3-oxo-6-azabicyclo[3.2.2]nonane (Regioselective Oxidation with Commercial Peracetic Acid) (424)

To *N*-benzyloxycarbonyl-2-azabicyclo[2.2.2]octan-5-one (400 mg, 1.53 mmol) in 1.5 mL of acetic acid containing 0.15 g of sodium acetate was added 1.5 mL of 28% peracetic acid. After the mixture was stirred in the dark for 18 hours, 15 mL of methylene chloride was added, the solution was washed with saturated aqueous sodium sulfite (4 × 5 mL) followed by saturated aqueous sodium bicarbonate (2 × 5 mL) and dried over magnesium sulfate. Removal of solvent in vacuo afforded 338 mg (80%) of lactone; bp 145–150° (0.025 torr); <sup>1</sup>H NMR ( CDCl<sub>3</sub>)  $\delta$  7.3 (s, 5H), 5.15 (s, 2H), 4.58 (br, H-1), 4.48 (br, H-5), 4.00 (dt, *J* = 13, 2 Hz, H-7n), 3.55 (dd, *J* = 13, 4 Hz, H-7x), 3.15 (dt, *J* = 17, 2 Hz, H-4), 2.3–1.8 (br, 4H).

5.1.1.16. (1S\*,2R\*)-exo-3-Phenylselenyl-cis-bicyclo[3.3.0]oct-7-ene-2-spiro-4'γ -butyrolactone (Regioselective and Chemoselective Cyclobutanone Oxidation with Basic Hydrogen Peroxide) (195)

A cooled (0°) basic hydrogen peroxide solution (30% aqueous hydrogen peroxide, 10.6 mL, 100 mmol; 10% aqueous sodium hydroxide, 15.1 mL) was added to 3.17 g (10.0 mmol) of

(1S\*,2R\*)-exo-3-phenylselenyl-cis-bicyclo[3.3.0]oct-7-ene-2-spiro(2'-oxocyclo butane) in 70 mL of tetrahydrofuran and 35 mL of methanol at 0°. After 30 minutes, the reaction was quenched with reduction of the selenoxide by addition of an aqueous solution of sodium sulfite (35 g in 100 mL of water) and stirring for 5 minutes. The mixture was poured into a rapidly stirring mixture of 50 mL of dichloromethane and 100 mL of saturated agueous sodium hydrogen sulfate. After 30 minutes, the organic phase was separated and the aqueous layer was extracted with 100 mL of dichloromethane followed by 2 × 100 mL of ethyl acetate. The combined organic phases were dried over magnesium sulfate and the solvent was removed in vacuo to give an orange oil which was dissolved in about 20 mL of benzene containing a small amount of *p*-toluene-sulfonic acid. The subsequent removal of the solvent in vacuo effected a dehydration to give the lactone. Purification by flash chromatography (500 mL hexanes; 1 L ether/hexanes, 1:3, 1 L ether/hexanes, 1:2, 100 mL fractions) gave 2.3 g (70%) of a white crystalline solid, mp 110–114°, Rf 0.58 (ether); IR ( CHCl<sub>3</sub>) 3080, 3060, 3010, 2960, 2920, 2860, 1770, 1580, 1475, 1450, 1435, 1280, 1230, 1200, 1160, 1060, 1040, 1020, 990, 960, 950, 925 cm<sup>-1</sup>; <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>) δ 7.50 (m, 2H), 7.26 (m, 3H), 5.84 (m, 1H), 5.50 (m, 1H), 3.30 (m, 1H), 3.23 (dd, J = 12.5 Hz, 1H), 3.0–1.85 (m, 8H); <sup>13</sup>C NMR (15 MHz, CDCl<sub>3</sub>) δ 175.4, 134.4, 132.9, 128.7, 128.5, 127.0, 126.8, 94.9, 60.0, 51.0, 41.7, 41.1, 36.9, 29.1, 26.5.

### 5.1.1.17. Pyrogallol 1-Monomethyl Ether (Dakin Oxidation of a Phenolic Aldehyde Using Basic Hydrogen Peroxide) (549)

The apparatus consisted of a 1-L three-necked flask fitted with a gas inlet tube extending about 3 cm into the flask and connected to the flask through a bubbler, a thermometer extending to the bottom, a mechanical stirrer, and a reflux condenser connected at the upper end with an exit tube leading to the hood. The reaction was carried out in an atmosphere of nitrogen or illuminating gas at the rate of 3 bubbles per second. In the flask were placed 60.8 g (0.4 mol) of 2-hydroxy-3-methoxybenzaldehyde and 200 mL of 2 N sodium hydroxide (0.4 mol). The mixture was stirred until almost all the solid had dissolved. The stirrer was replaced by a dropping funnel which contained 284 mL (0.5 mol) of 6% hydrogen peroxide (prepared by diluting 63 g of a solution containing 27% hydrogen peroxide was added in portions of 20–25 mL. About 1 hour was required for the addition; the temperature was kept between 40 and 50°. After the addition of the first portion of hydrogen peroxide, the temperature rose to about 45° and a dark solution resulted. The temperature

was allowed to fall to 40° before the next portion of the peroxide was added. After all the hydrogen peroxide was added, the reaction mixture was allowed to cool to room temperature and was then saturated with sodium chloride, after which it was extracted four times with 100-mL portions of ether. The combined extracts were dried over sodium sulfate. The ether was removed by distillation on a steam bath, and the residue was then distilled under reduced pressure. Pyrogallol monomethyl ether was collected at 136–138° (22 mm). The yield was 38–44.5 g (68–80%) of a colorless to light-yellow oil which solidified on standing.

### 5.1.1.18. 4-Oxahomoadamantan-5-one (Nafion-H Acid Catalysis of 30% Hydrogen Peroxide Oxidation) (323)

A mixture of adamantone (750 mg, 5 mmol) and the perfluorinated resinsulfonic acid Nafion-H (DuPont Company registered trademark, 250 mg) in dichloromethane (15 mL) was mixed with commercial 30% hydrogen peroxide (7.5 mL, 66 mmol) and stirred under reflux for 12 hours. The reaction mixture was filtered and the filtrate was extracted with dichloromethane followed by washing once with aqueous sodium bicarbonate and brine. Evaporation of solvent and direct sublimation gave glistening white crystals (798 mg, 96%) of product, mp 286–288°.

#### 5.1.1.19. [3a α ,5(S\*),7a

 $\alpha$  ]-3a,4,7,7a-Tetrahydro-6-methyl-5-[1-methyl-4-(tetrahydro-2H-pyran-2-yl)ox y]butyl-2-(3H)-benzofuranone (Regioselective and Chemoselective Oxidation of a Cyclobutanone with Basic tert-Butyl Hydroperoxide) (272)

A mixture of 66 mg (0.22 mmol) of  $[1 \alpha, 3(S^*), 6]$ 

α ]-4-methyl-3-[1-methyl-4-[(tetrahydro-2*H*-pyran-2-yl)oxybutyl]bicyclo[4.2.0]oc t-3-en-7-one, 65 μL (0.66 mmol) of *tert*-butyl hydroperoxide, and 103 μL (0.26 mmol) of 10% aqueous sodium hydroxide in 2.3 mL of tetrahydrofuran cooled to 0° was stirred for 30 minutes. The reaction mixture was taken up in 50 mL of benzene–ether (1:1) and was washed with 2 mL of water and two 2-mL portions of brine. The organic layer was dried over magnesium sulfate and the solvent was evaporated in vacuo leaving 60 mg of crude lactone. Purification with 5 g of silica gel (elution with ether–benzene, 2:3) afforded 53 mg (76%) of pure product as an oil; IR (CCl<sub>4</sub>) 2955, 2945, 2880, 1784, 1555, 1455, 1445, 1422, 1390, 1359, 1350, 1330, 1290, 1255, 1220, 1210, 1190, 1145, 1124, 1085, 1039, 998, 990, 940, 915, 868 cm<sup>-1</sup>; <sup>1</sup>H NMR (CCl<sub>4</sub>)  $\delta$  4.68 (m, 1H), 4.53 (br s, 1H), 1.78 (s, 3H), 0.95 (d, *J* = 7 Hz, 3H).

#### 5.1.1.20. 5,5,9-Trimethyl-10-oxatricyclo[7.3.2.0<sup>1,6</sup>]tetradec-6-en-11-one (Chemoselective and Regioselective Oxidation of a Bridged Ketone Using bis(Trimethylsilyl) Peroxide) (477)

To a solution of 5,5,9-trimethyltricyclo[7.2.2.0<sup>1.6</sup>]tridec-6-en-10-one (120.2 mg, 0.517 mmol) and bis(trimethylsilyl) peroxide (521) (440 mg, 2.59 mmol) in methylene chloride (5 mL) was added boron trifluoride etherate (0.320 mL,

2.59 mmol) at –20°. After stirring 1 hour at –20 to –10°, the reaction was quenched with 5% aqueous sodium thiosulfate. The mixture was allowed to warm to room temperature and extracted with two portions of ether. The extracts were combined, washed with saturated sodium bicarbonate solution and saturated brine, dried over magnesium sulfate, and concentrated in vacuo. Chromatography (6 g of silica gel: 10:1 hexane–ethyl acetate) of the remaining oil (142.8 mg) gave 54.9 mg (43%) of product as colorless needles, mp 106–107°; IR ( CCl<sub>4</sub>) 1720 cm<sup>-1</sup>; <sup>1</sup>H NMR ( CCl<sub>4</sub>)  $\delta$  5.50 (dd, *J* = 5.7 Hz, 4.1 Hz, 1H), 2.98 (br d, *J* = 16.2 Hz, W<sub>1/2</sub> = 3 Hz, 1H), 2.49 (d, *J* = 16.2 Hz, 1H), 2.5–1.2 (m, 12H), 1.32 (s, 3H), 1.11 (s, 3H), 1.09 (s, 3H); mass spectrum (13.4 eV) m/z (rel intensity) 248 (M<sup>+</sup>,100), 233 (3.9), 206 (83.2), 189 (43.9), 188 (58.5), 179 (26.7), 177 (80.2), 166 (46.2), 82 (10.2).

#### 5.1.1.21. Tetraphenyl- α -pyrone [Preparation and Use of bis(Trimethylsilyl) Monoperoxysulfate, a bis(Trimethylsilyl)-Buffered Reagent with Advantages over Caro's Acid] (47)

A 100-mL, three-necked, round-bottom flask, equipped with a pressure-equalizing addition funnel, Teflon spinbar, rubber septum cap, and a three-way stopcock, was attached to a nitrogen manifold. Under a nitrogen atmosphere, a solution of 1.0 g (5.6 mmol) of bis(trimethylsilyl) peroxide in 20 mL of dry methylene chloride was syringed into the reaction vessel. After the mixture was cooled to  $-30^{\circ}$  with stirring, 25 mL of a 0.2 M solution of sulfur trioxide in methylene chloride was added dropwise from the addition funnel over a period of 15 minutes, carefully maintaining the reaction mixture at  $-30^{\circ}$ . The reaction progress was monitored by <sup>1</sup>H NMR, observing the appearance of the trimethylsilyl product signal as a singlet at  $\delta$  0.40. After completion of the reaction (about 30 minutes), this solution was added to 526 mg (1.4 mmol) of tetracyclone in 10 mL of dry methylene chloride at -30° over 45 minutes. The reaction mixture was allowed to warm to room temperature (about 30°) and kept at this temperature for 8 hours. To the mixture was added 5 mL of water, the solution was transferred to a separatory funnel, the aqueous layer was siphoned off, and the methylene chloride layer was washed with 2 × 20 mL of 5% aqueous sodium bicarbonate and dried over magnesium sulfate. Rotoevaporation of the solvent and purification of the crude product by silica gel chromatography gave 417 mg (76%) of tetraphenyl-  $\alpha$  -pyrone, IR and <sup>1</sup>H NMR identical with authentic material.

# 5.1.1.22. Phenylacetaldehyde (Regioselective Oxidation of an $\alpha$ , $\beta$ -Unsaturated Aldehyde with 30% Hydrogen Peroxide Catalyzed by 2-Nitrophenylbenzeneperseleninic Acid) (628)

To a vigorously stirred solution of cinnamaldehyde (13.2 g, 0.1 mol) in dichloromethane (100 mL), bis(2-nitrophenyl) diselenide (1.5 g, 3.7 mmol) and 30% hydrogen peroxide (25 mL, 0.22 mol) were added. The mixture was stirred at room temperature until all aldehyde was consumed (TLC). The solid was filtered off and washed with dichloromethane and water. The filtrate was

transferred to a separatory funnel and the layers were separated. The organic layer was washed with water, 5% aqueous sodium bicarbonate, 10% aqueous sodium bisulfite, again with water, and then dried over sodium sulfate. The solvent was evaporated in vacuo, the residue was dissolved in ether (100 mL), water (100 mL) and sodium bicarbonate (10 g, 0.12 mol) were added, and the mixture was vigorously stirred at room temperature for 31 hours. The organic layer was separated, washed with water, and dried over sodium sulfate. Ether was evaporated and phenylacetaldehyde was distilled at reduced pressure, bp 92° (20 mm), yield 7.5 g (63%), 2,4-dinitrophenylhydrazone mp 121°.

### 5.1.1.23. Phenyl Benzoate (A General Procedure for Use of Sodium Perborate, an Inexpensive Oxidant) (114)

A mixture of 4.98 g (3 mol) of sodium perborate tetrahydrate and 1.82 g (0.01 mol) of benzophenone in 30 mL of trifluoroacetic acid was stirred for 4–8 hours. The inorganic salts were removed by filtration, and ice water (about 250 mL) was added. The crude product could be isolated following extraction with methylene chloride as described previously to afford 1.60 g (81%) of product identical with known material. (42, 734)

### 6. Tabular Survey

The information in the following tables is an extension of examples of the Baeyer–Villiger reaction of ketones and aldehydes with peracids reviewed previously and covers the literature from January, 1954 through December, 1989. Significant reactions reported in 1990-91 are also included. The arrangement of the tables follows that used in the previous review (2) with several exceptions. The table on oxidation of alicyclic ketones has been expanded to three tables to accommodate examples of monocyclic and spirocyclic, fused bicyclic and polycyclic, and bridged bicyclic and polycyclic substrates. The table on polycarbonyl compounds includes only 1,2-dicarbonyl compounds; otherwise the structure is treated as a monocarbonyl compound. New tables on  $\alpha$ ,  $\beta$  -unsaturated aldehydes, ketals and acetals, and nitrogen derivatives of ketones and aldehydes have been added. The separate table for aromatic ketones has been removed and they are now listed in the appropriate sections. The tables include examples of oxidations of carbonyl compounds under Baeyer–Villiger conditions that have led to formation of products other than esters or lactones. Because hydrogen peroxide and several metal oxidants also react with ketones to afford lactones, such reactions are often considered in the current literature to be Baeyer–Villiger reactions. The tables also include examples of such Baeyer-Villiger-like oxidations because of their utility in synthesis and similarity in mechanism.

The carbonyl compounds in the tables are arranged according to total carbon content in the molecular formula of the starting ketone. Ketals and acetals are arranged according to carbon content of the parent ketone. Within each category based on carbon content, the compounds are arranged by complexity of molecular formula according to the *Chemical Abstracts* convention. When molecular formulas are identical, structures are arranged from the simpler to the more complex and from the smaller ring sizes to the larger ones.

When multiple references are cited for an entry, the conditions quoted provide the best product yield and are given in the first reference. The conditions stated refer in most cases only to the oxidation itself. Overnight reactions are reported as "12 h." Room temperature oxidations are reported as "25°." Product yields are in parentheses; the yield of recovered starting material is indicated by an asterisk. A dash means that the yield of product has not been reported. Subsequent references for an entry provide the same product, but may use the same or a different oxidant or an alternative set of conditions.

The following abbreviations are used in the tables:

Ac acetyl

| Bn        | benzyl                                                                                 |
|-----------|----------------------------------------------------------------------------------------|
| BPC       | N-benzoylperoxycarbonic acid                                                           |
| BTMSP     | bis(trimethylsilyl) peroxide                                                           |
| CAN       | ceric ammonium nitrate                                                                 |
| diglyme   | diethylene glycol dimethyl ether                                                       |
| 3,5-DNPBA | 3,5-dinitroperbenzoic acid                                                             |
| ether     | diethyl ether                                                                          |
| HMPA      | hexamethylphosphoric triamide                                                          |
| LDA       | lithium diisopropylamide                                                               |
| MCPBA     | <i>m</i> -chloroperbenzoic acid (chloroform is always present unless otherwise stated) |
| MPPA      | monoperphthalic acid                                                                   |
| Nafion    | a poly(perfluorosulfonic acid) (DuPont<br>Trademark)                                   |
| PAA       | peracetic acid (acetic acid is always present)                                         |
| PBA       | perbenzoic acid (chloroform is always present unless otherwise stated)                 |
| PMA       | monopermaleic acid                                                                     |
| pN Bn     | <i>p</i> -nitrobenzyl                                                                  |
| pN PBA    | <i>p</i> -nitroperbenzoic acid                                                         |
| PSA       | persulfuric acid (sulfuric acid is always present)                                     |
| TBMP      | di(5- <i>tert</i> -butyl-4-hydroxy-2-methyl) sulfide                                   |
| TBDMS     | tert-butyldimethylsilyl                                                                |
| TBDPS     | tert-butyldiphenylsilyl                                                                |
| TECTA     | $\textit{N-}\beta$ , $\beta$ , $\beta$ -trichloroethoxycarbonyl-1,2,4-triazole         |
| TFPAA (%) | trifluoroperacetic acid (percent hydrogen peroxide used in its preparation)            |
| Ts        | <i>p</i> -toluenesulfonyl                                                              |
|           |                                                                                        |

### Table I. Reactions of Straight-Chain Ketones

#### View PDF

Table II. Reactions of Monocyclic and Spirocyclic Ketones

View PDF

Table III. Reactions of Fused-Ring Ketones

View PDF

Table IV. Reactions of Bridged Bicyclic and Polycyclic Ketones

View PDF

Table V. Reactions of  $\alpha$  ,  $\beta$  -Unsaturated Ketones

View PDF

Table VI. Reactions of 1,2-Dicarbonyl Compounds

View PDF

Table VII. Reactions of Aldehydes

View PDF

Table VIII. Reactions of  $\alpha$  ,  $\beta$  -Unsaturated Aldehydes

View PDF

Table IX. Peracid Reactions with Ketals and Acetals

**View PDF** 

Table X. Peracid Reactions with Nitrogen Derivatives of Ketones andAldehydes

View PDF

| _  | Reactant                                                                   | Conditions                                                                                           | Product(s) and Yield(s) (%)                                                                                                                               |       | Refs.     |
|----|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| C. |                                                                            |                                                                                                      |                                                                                                                                                           |       |           |
|    | COCH3                                                                      | TEPAA, NayHPO4, CH2Cl2                                                                               | O <sub>2</sub> CCH <sub>3</sub>                                                                                                                           | (12)  | 49        |
|    | <b>A</b> n                                                                 | 2.5 h, reflux                                                                                        | X <sup>H</sup>                                                                                                                                            | ()    |           |
|    | CH1COC2H1                                                                  | 30% H <sub>2</sub> O <sub>2</sub> , polystyrene-SeO <sub>2</sub> H.                                  | $C_{2}H_{2}OH + CH_{3}CO_{2}H$                                                                                                                            | (90)  | 43        |
|    |                                                                            | 12 h                                                                                                 |                                                                                                                                                           | (10)  |           |
|    | CH-COCHOHCH                                                                | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub>                            | CH <sub>3</sub> CO <sub>2</sub> C <sub>2</sub> H <sub>3</sub>                                                                                             | (72)  | 42        |
| Cs | CH3COCHOHCH3                                                               | 70% MCPBA, CH2Cl2, 0                                                                                 | CH <sub>3</sub> CO <sub>2</sub> H                                                                                                                         | ()    | Л         |
|    | CH <sub>3</sub> CD <sub>2</sub> COCD <sub>2</sub> CH <sub>3</sub>          | 1. TFPAA                                                                                             | CH <sub>3</sub> CD <sub>2</sub> CO <sub>2</sub> H + CH <sub>3</sub> CD <sub>2</sub> OH                                                                    |       | 48        |
|    | 4                                                                          | 2. KOH<br>TEPAA (90%) No HPO                                                                         | (64) (62)                                                                                                                                                 | (52)  | 17 15     |
|    | COCH3                                                                      | $CH_2Cl_2$ , 30 min, reflux                                                                          | <sup>O₂CCH3</sup>                                                                                                                                         | (55)  | 734       |
|    | CH3COC3H7-n                                                                | TFPAA, Na2HPO4, CH2Cl2                                                                               | CH <sub>3</sub> CO <sub>2</sub> C <sub>3</sub> H <sub>7</sub> -n                                                                                          | (78)  | 42        |
|    | GU 000 U 1                                                                 | K <sub>2</sub> S <sub>2</sub> O <sub>8</sub> , 50% H <sub>2</sub> SO <sub>4</sub>                    | $n-C_3H_7OH + CH_3CO_2H$                                                                                                                                  | (100) | 750, 494  |
|    | CH <sub>3</sub> COC <sub>3</sub> H <sub>7</sub> i                          | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub><br>K-S-O- 50% H-SO-        | $CH_3CO_2C_3H_7i$                                                                                                                                         | (81)  | 42        |
|    | C <sub>2</sub> H <sub>5</sub> COC <sub>2</sub> H <sub>5</sub>              | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub>                            | $C_2H_3CO_2C_2H_5$                                                                                                                                        | (78)  | 42, 46,   |
| ~  |                                                                            |                                                                                                      |                                                                                                                                                           |       | 532       |
| Co | A                                                                          | TEPAA (90%) Na-HPO                                                                                   | A                                                                                                                                                         | (<50) | 45        |
|    | $\Delta$ COC <sub>2</sub> H <sub>5</sub>                                   | CH <sub>2</sub> Cl <sub>2</sub> , 30 min, reflux                                                     | $\Delta CO_2C_2H_5 + \Delta O_2CC_2H_5$                                                                                                                   | (=50) |           |
|    |                                                                            |                                                                                                      | т п                                                                                                                                                       |       |           |
|    | CH COC H -                                                                 | TERAA NA URO CU CI                                                                                   | I:II = 79:21                                                                                                                                              | (01)  | 42        |
|    | $C_2H_5COC_3H_7n$                                                          | $K_2S_2O_4$ , 50% H <sub>2</sub> SO <sub>4</sub>                                                     | $n-C_3H_2OH + C_2H_5CO_2H +$                                                                                                                              | (81)  | 42<br>750 |
|    |                                                                            |                                                                                                      | $C_2H_5OH + n-C_3H_7CO_2H$                                                                                                                                | (25)  |           |
|    | CH <sub>3</sub> COCH <sub>2</sub> C <sub>3</sub> H <sub>7</sub> - <i>i</i> | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,                          | CH <sub>3</sub> CO <sub>2</sub> CH <sub>2</sub> C <sub>3</sub> H <sub>7</sub> -i                                                                          | (84)  | 42, 46,   |
|    |                                                                            | 30  min, reflux<br>K <sub>2</sub> S <sub>2</sub> O <sub>8</sub> , 50% H <sub>2</sub> SO <sub>4</sub> | $CH_{3}CO_{3}H + i - C_{3}H_{3}CH_{3}OH$                                                                                                                  | (100) | 765       |
|    |                                                                            |                                                                                                      |                                                                                                                                                           |       |           |
|    | r-C4H4COCH3                                                                | MgMPPA, CH <sub>3</sub> OH-H <sub>2</sub> O,                                                         | t-C4H4O2CCH3                                                                                                                                              | (72)  | 748, 182  |
|    |                                                                            | 4 h, 30°<br>30% $H_2O_2$ , polystyrene-SeO <sub>2</sub> H,                                           | I<br>I (79) + ( $t$ -C <sub>4</sub> H <sub>9</sub> OH + CH <sub>3</sub> CO <sub>2</sub> H)                                                                |       | 43, 750   |
|    |                                                                            | 60 H                                                                                                 | I = 88.12                                                                                                                                                 |       |           |
| ~  | CH <sub>3</sub> CO(CH <sub>2</sub> ) <sub>4</sub> OH                       | PAA                                                                                                  | HO(CH <sub>2</sub> ) <sub>4</sub> OH                                                                                                                      | ()    | 766       |
| C7 |                                                                            |                                                                                                      |                                                                                                                                                           |       |           |
|    | СОСН3                                                                      |                                                                                                      | COCH3                                                                                                                                                     |       |           |
|    |                                                                            | МСРВА                                                                                                | N                                                                                                                                                         | (100) | 100       |
|    | W-                                                                         |                                                                                                      | <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>              |       |           |
|    | p-HOC <sub>6</sub> H <sub>4</sub> COCH <sub>3</sub>                        | 3% H <sub>2</sub> O <sub>2</sub> , NaOH, 20 h, 28°                                                   | p-HOC <sub>n</sub> H₄OH                                                                                                                                   | (87)  | 96        |
|    | COCII                                                                      | MCPBA, K2CO3, CHCI3,                                                                                 | 02CCH3                                                                                                                                                    |       | 52        |
|    | COCH3                                                                      | 12 min, reflux                                                                                       | $O_2CCH_3 + / /$                                                                                                                                          |       |           |
|    |                                                                            |                                                                                                      | (90) (5) (5)*                                                                                                                                             |       |           |
|    | COCH3                                                                      | PMA, CH <sub>2</sub> Cl <sub>2</sub> , 1 h, warm                                                     | 02CCH3                                                                                                                                                    | (90)  | 52        |
|    | Calle COCH                                                                 |                                                                                                      | C II 0 CCII                                                                                                                                               | (10)* |           |
|    | C2.1.5                                                                     |                                                                                                      | C2H5 O2CCH3                                                                                                                                               |       | 22.1      |
|    | ONH                                                                        | MCPBA, C2R (OAC, 3 h, 50"                                                                            | 0 NH                                                                                                                                                      | (72)  | /6/       |
|    |                                                                            |                                                                                                      |                                                                                                                                                           |       |           |
|    | COCH3                                                                      | TFPAA (90%), Na <sub>2</sub> HPO <sub>4</sub> ,                                                      | O2CCH3                                                                                                                                                    | (67)  | 768       |
|    |                                                                            | $CH_2Cl_2$ , 8 h, reflux                                                                             |                                                                                                                                                           |       |           |
|    | A COC-H                                                                    |                                                                                                      |                                                                                                                                                           |       |           |
|    |                                                                            | 1. TFPAA (90%), Na <sub>2</sub> HPO <sub>4</sub> ,                                                   | $\bigtriangleup^{\operatorname{CO}_2\operatorname{C}_3\operatorname{H}_7-i} + \bigtriangleup^{\operatorname{O}_2\operatorname{CC}_3\operatorname{H}_7-i}$ | (—)   | 45, 769   |
|    |                                                                            | CH <sub>2</sub> Cl <sub>2</sub> , 3 h, 0°<br>2, 3 h, 25°                                             | 1 11                                                                                                                                                      |       |           |
|    |                                                                            |                                                                                                      | 1:11 = 96:4                                                                                                                                               |       |           |
|    | COCH <sub>3</sub>                                                          | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 60 h, 20°                                                   | O <sub>2</sub> CCH <sub>3</sub>                                                                                                                           | (100) | 52        |
|    |                                                                            |                                                                                                      |                                                                                                                                                           | (100) | 52        |

|          | Reactant                                                                           | Conditions                                                                                                                             | Product(s) and Yield(s) (%)                                                                                                                         |                              | Refs.                       |
|----------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------|
|          | CH <sub>3</sub> COC(CH <sub>3</sub> ) <sub>2</sub> COCH <sub>3</sub>               | 30% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , <i>t</i> -BuOH,<br>1 h. 100°                                      | <i>ι</i> -C₄H <sub>9</sub> CO <sub>2</sub> H                                                                                                        | (76)<br>(26)*                | 78                          |
|          | CH <sub>3</sub> COC <sub>5</sub> H <sub>11</sub> -n                                | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>30 min, heat                                            | CH <sub>3</sub> CO <sub>2</sub> C <sub>5</sub> H <sub>11</sub> -n                                                                                   | (87)                         | 42, 46,<br>765              |
|          | C <sub>2</sub> H <sub>5</sub> COC <sub>4</sub> H <sub>9</sub> - <i>n</i>           | <i>t</i> -BuO <sub>2</sub> H, KOH, C <sub>6</sub> H <sub>3</sub> Cl, 6 h,<br>60°                                                       | $n-C_4H_9CO_2H major+ n-C_3H_7CO_2H+ C_2H_5CO_2H+ CH_5CO_2H$                                                                                        | (27)                         | 532                         |
|          |                                                                                    | TFPAA, CH <sub>2</sub> Cl <sub>2</sub>                                                                                                 | $C_2H_5O_2CC_4H_{9}-n + C_2H_5CO_2C_4H_{9}-n$ I II                                                                                                  | (—)                          | 770                         |
|          | <i>n</i> -C <sub>3</sub> H <sub>7</sub> COC <sub>3</sub> H <sub>7</sub> - <i>n</i> | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>30 min, heat                                            | 1:11 = 33:67<br>$n-C_3H_7CO_2C_3H_7-n$                                                                                                              | (80)                         | 42                          |
|          |                                                                                    | [(CH <sub>3</sub> ) <sub>3</sub> Si] <sub>2</sub> SO <sub>5</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 8 h,<br>30°                      |                                                                                                                                                     | (96)                         | 47                          |
| <b>C</b> | n-C <sub>3</sub> H <sub>7</sub> COC <sub>3</sub> H <sub>7</sub> -i                 | $H_2O_2$ , $CH_3OH$ , reflux                                                                                                           | $i-C_{3}H_{7}CO_{2}H + n-C_{3}H_{7}CO_{2}H$<br>(2) (5)                                                                                              | (82)*                        | 494                         |
| C8       | C <sub>6</sub> H <sub>3</sub> COCF <sub>3</sub>                                    | TFPAA, CHCl <sub>3</sub> , 5 h, 70°                                                                                                    | $C_6H_5CO_2H + C_6H_5OH$ $I II$ $I:II = 93:7$                                                                                                       | (72)                         | 113                         |
|          | <i>p</i> -BrC <sub>6</sub> H <sub>4</sub> COCH <sub>3</sub>                        | [(CH3)3Si]2SO5, CH2Cl2, 8 h,<br>30°                                                                                                    | ₽-BrC <sub>6</sub> H₄OH                                                                                                                             | (98)                         | 47, 114                     |
|          |                                                                                    | MCPBA, CHC1 <sub>3</sub> , 25°<br>MCPBA (2 eq), solid state, 5 d,<br>25°                                                               | p-BrC <sub>6</sub> H₄O <sub>2</sub> CCH <sub>3</sub>                                                                                                | (50)<br>(64)                 | 740<br>740                  |
|          | p-ClC <sub>6</sub> H <sub>4</sub> COCH <sub>3</sub>                                | 90% H <sub>2</sub> O <sub>2</sub> , P <sub>2</sub> O <sub>5</sub> , 30°<br>TFPAA (90%), CH <sub>2</sub> Cl <sub>2</sub> , 20 h,<br>25° | p-CIC6H4O2CCH3<br>p-CIC6H4OH<br>p-CIC6H4CO2H                                                                                                        | (95)<br>(42)<br>(1)<br>(64)* | 28<br>15                    |
|          |                                                                                    | <i>t</i> -BuO₂H, KOH, 80°                                                                                                              | <i>p</i> -ClC <sub>6</sub> H₄CO₂H                                                                                                                   | (12)<br>(70)*                | 532                         |
|          | CI COCH3                                                                           | 3% H₂O₂, NaOH, 12 h, 35°                                                                                                               | СІ                                                                                                                                                  | (47)                         | 97                          |
|          | но                                                                                 |                                                                                                                                        | но                                                                                                                                                  | (44)*                        |                             |
|          | and the second second                                                              | 20% PAA, AcOH, 48 h, 35°<br>and 1 h, 68°                                                                                               | •                                                                                                                                                   | (29)<br>(29)*                | 97                          |
|          | ο-O₂NC₀H₄COCH₃                                                                     | TFPAA, CHCl <sub>3</sub> , 5 h, 70°                                                                                                    | $o-O_2NC_bH_4OH + o-O_2NC_bH_4CO_2H$ $I$ $II$ $II$                                                                                                  | (38)                         | 113                         |
|          | m-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> COCH <sub>3</sub>                  | TFPAA, CHCl <sub>3</sub> , 5 h, 70°                                                                                                    | $m - O_2 N C_6 H_4 O_2 C C H_3 + m - O_2 N C_6 H_4 C O_2 C H_3$<br>I III                                                                            | (24)<br>(—)                  | 113                         |
|          | p-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> COCH <sub>3</sub>                  | TFPAA (90%), CH <sub>2</sub> Cl <sub>2</sub> , 2 d, 25°                                                                                | $p-O_2NC_6H_4OH + p-O_2NC_6H_4CO_2H$<br>I II<br>I+H = 98:12                                                                                         | (70)                         | 15                          |
|          | O <sub>2</sub> N<br>HO                                                             | 3% H <sub>2</sub> O <sub>2</sub> , NaOH, 12 h, 35°                                                                                     |                                                                                                                                                     | (2)<br>(95)*                 | 97                          |
|          |                                                                                    | 20% PAA, AcOH, 48 h, 35°,<br>then 1 h, 60°                                                                                             |                                                                                                                                                     | (35)<br>(46)*                | 97                          |
|          | C <sub>6</sub> H <sub>5</sub> COCH <sub>3</sub>                                    | TFPAA (90%), Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 1 h, heat                                         | C <sub>6</sub> H <sub>3</sub> O <sub>2</sub> CCH <sub>3</sub> 1 (major)<br>C <sub>6</sub> H <sub>5</sub> CO <sub>2</sub> CH <sub>3</sub> 11 (trace) | (90)                         | 15, 113,<br>114<br>761, 765 |
|          |                                                                                    | MCPBA (85%), CF <sub>3</sub> CO <sub>2</sub> H,<br>CH <sub>2</sub> Cl <sub>2</sub> , 8 h, 0–25°                                        | 1                                                                                                                                                   | (75)                         | 742, 124                    |
|          |                                                                                    | <i>t</i> -BuO <sub>2</sub> H, KOH, benzene,<br>18-crown-6, 1 h, 70°                                                                    | C <sub>6</sub> H <sub>3</sub> CO <sub>2</sub> H                                                                                                     | (45)<br>(55)*                | 122, 124                    |
|          | p-HOC <sub>6</sub> H <sub>4</sub> COCH <sub>3</sub>                                | 3% H <sub>2</sub> O <sub>2</sub> , NaOH, 20 h, 28°                                                                                     | р-нос₀н₄он                                                                                                                                          | (87)                         | 90, 172                     |



|    | Reactant                                                                                                                                                           | Conditions                                                                                                                                           | Product(s) and Yield(s) (%)                                                                                                                                                                              |                     | Refs.             |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------|
|    | CH <sub>3</sub> COC <sub>6</sub> H <sub>13</sub> -n                                                                                                                | [(CH <sub>3</sub> ) <sub>3</sub> Si] <sub>2</sub> O <sub>2</sub> , SnCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>11 b. 25°                | CH <sub>3</sub> CO <sub>2</sub> C <sub>6</sub> H <sub>13</sub> - <i>n</i>                                                                                                                                | (69)                | 220, 221, 494, 46 |
|    | CH <sub>3</sub> CO(CH <sub>2</sub> ) <sub>6</sub> OH                                                                                                               | 96% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub>                                                                                   | CH <sub>3</sub> CO <sub>2</sub> (CH <sub>2</sub> ) <sub>6</sub> OH +<br>HO(CH <sub>3</sub> ) <sub>6</sub> OH                                                                                             | (50)<br>(50)        | 776               |
| с. | n-C4H9COCH2N(CH3)2                                                                                                                                                 | 30% H <sub>2</sub> O <sub>2</sub> , C <sub>2</sub> H <sub>5</sub> OH, 1–14 d                                                                         | $n-C_4H_9CO_2H + (CH_3)_2NCHO$                                                                                                                                                                           | ()                  | 73                |
| Cy | ο-HO₂CC₀H₄COCH₃                                                                                                                                                    | TFPAA, CHCl <sub>3</sub> , 5 h, 70°                                                                                                                  | $ \begin{array}{c} \phi \text{-HO}_2\text{CC}_6\text{H}_4\text{OH} + \phi \text{-HO}_2\text{CC}_6\text{H}_4\text{CO}_2\text{H} \\ \text{I} \\ \text{II} \\ \text{III} \\ \text{III} = 94.6 \end{array} $ | (42)                | 113               |
|    | <i>p</i> -HO₂CC₀H₄COCH₃                                                                                                                                            | TFPAA, CHCl <sub>3</sub> , 5 h, 70°                                                                                                                  | $p-HO_2CC_6H_4OH + p-HO_2CC_6H_4CO_2H$ $I \qquad II$ $I:II = 97:3$                                                                                                                                       | (86)                | 113               |
|    | HO <sub>2</sub> C COCH <sub>3</sub>                                                                                                                                | 3% H <sub>2</sub> O <sub>2</sub> , NaOH, 12 h, 35°                                                                                                   | HO <sub>2</sub> C OH                                                                                                                                                                                     | (63)<br>(26)*       | 97                |
|    |                                                                                                                                                                    | 1. 20% PAA, AcOH, 48 h, 35°<br>2. 1 h, 60°                                                                                                           |                                                                                                                                                                                                          | (45)<br>(40)*       | 97                |
|    | p-ClC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> COCH <sub>3</sub><br>o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> COC <sub>2</sub> H <sub>5</sub>             | H <sub>2</sub> O <sub>2</sub> (0.4 M), NaOH,<br>C <sub>2</sub> H <sub>3</sub> OH–H <sub>2</sub> O, 4.5 h, 55°<br>TFPAA, CHCl <sub>3</sub> , 5 h, 70° | $p-ClC_{6}H_{4}CH_{2}OH + p-ClC_{6}H_{4}CHO + p-ClC_{6}H_{4}CHO + p-ClC_{6}H_{6}$<br>(6) (1) (89<br>$o-O_{2}NC_{6}H_{4}OH + o-O_{2}NC_{6}H_{4}CO_{2}H$                                                   | ₄CO₂H<br>))<br>(27) | 113               |
|    |                                                                                                                                                                    |                                                                                                                                                      | I II<br>I:II = 2:98                                                                                                                                                                                      |                     |                   |
|    | m-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> COC <sub>2</sub> H <sub>5</sub><br>p-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> COC <sub>2</sub> H <sub>5</sub> | TFPAA, CHCl <sub>3</sub> , 5 h, 70°<br>TFPAA, CHCl <sub>3</sub> , 5 h, 70°                                                                           | m-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> H<br>p-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> H                                                                   | (90)<br>(100)       | 113<br>113        |
|    | CH <sub>3</sub> O                                                                                                                                                  | 1. 20% PAA, AcOH, 48 h, 35°<br>2. 1 h, 60°                                                                                                           | CH <sub>3</sub> O                                                                                                                                                                                        | (70)                | 97                |
|    | O <sub>2</sub> N<br>COCH <sub>3</sub>                                                                                                                              | 1. 20% PAA, AcOH, 48 h, 35°<br>2. 1 h, 60°                                                                                                           | O <sub>2</sub> N OH                                                                                                                                                                                      | (87)<br>(6)*        | 97                |
|    | CH <sub>3</sub> O <sup>-</sup> <sup>-</sup> C <sub>1</sub> H <sub>2</sub> CH <sub>2</sub> COCH <sub>3</sub>                                                        | TEPAA Na HPO. CH-CL                                                                                                                                  | CH <sub>3</sub> O <sup>-</sup> <sup>-</sup> C.H <sub>4</sub> CH <sub>2</sub> O <sub>2</sub> CCH <sub>3</sub>                                                                                             | (95-97)             | 778, 771          |
|    |                                                                                                                                                                    | 1 h<br>NaBO <sub>3</sub> , TFAA-AcOH, 4-8 h,                                                                                                         | I                                                                                                                                                                                                        | (88)                | 114               |
|    |                                                                                                                                                                    | 25°<br>H <sub>2</sub> O <sub>2</sub> (0.4 M), NaOH,                                                                                                  | $C_6H_5CH_2OH + C_6H_5CHO + C_6H_5CO_2H$                                                                                                                                                                 |                     | 777               |
|    | p-CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> COCH <sub>3</sub>                                                                                                  | NaBO3, TFAA-AcOH, 4-8 h,                                                                                                                             | (3) $(3)$ $(3)$ $(3)p-CH_3C_5H_4O_2CCH_3$                                                                                                                                                                | (79)                | 114, 779          |
|    |                                                                                                                                                                    | <i>t</i> -BuO <sub>2</sub> H, KOH, 80°                                                                                                               | p-CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> H                                                                                                                                        | (3)<br>(84)*        | 122               |
|    | C <sub>6</sub> H <sub>5</sub> COC <sub>2</sub> H <sub>5</sub>                                                                                                      | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>1 h, reflux                                                           | $C_{b}H_{5}O_{2}CC_{2}H_{5} + C_{b}H_{5}CO_{2}C_{2}H_{5}$<br>(87) (6)                                                                                                                                    | ×- 7                | 15, 124           |
|    |                                                                                                                                                                    | t-BuO <sub>2</sub> H                                                                                                                                 | C <sub>6</sub> H <sub>5</sub> CO <sub>2</sub> H                                                                                                                                                          | (60)<br>+ (40)*     | 15, 124           |
|    | CH3CHOHCOC6H5                                                                                                                                                      | 70% MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 0°                                                                                                      |                                                                                                                                                                                                          | (40)                | 71                |
|    | o-CH3OC6H4COCH3                                                                                                                                                    | 70% MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 0°<br>TFPAA, CHCl <sub>3</sub> , 5 h, 70°                                                               | $C_6H_3CHO$<br>$o-CH_3OC_6H_4OH + o-CH_3OC_6H_4CO_2CH_3$<br>I II<br>I = 87-90.13-10                                                                                                                      | (81)<br>(73–82)     | 113               |
|    | m-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> COCH <sub>3</sub>                                                                                                 | TFPAA, CHCl <sub>3</sub> , 5 h, 70°                                                                                                                  | m-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> O <sub>2</sub> CCH <sub>3</sub> + $m$ -CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> CH <sub>3</sub><br>1 II<br>$1 = 63-76\cdot38-24$  | (48–55)             | 113               |
|    | p-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> COCH <sub>3</sub>                                                                                                 | TFPAA, CHCl <sub>3</sub> , 5 h, 70°                                                                                                                  | $p-CH_3OC_6H_4O_2CCH_3 + p-CH_3OC_6H_4CO_2CH_3$<br>I II<br>I + II = 84 - 88 + 16 - 12                                                                                                                    | (75–80)             | 113               |
|    |                                                                                                                                                                    | NaBO <sub>3</sub> , TFAA–AcOH,<br>$4-8 + 25^{\circ}$                                                                                                 | I                                                                                                                                                                                                        | (81)                | 114, 600          |
|    | p-HOC <sub>6</sub> H <sub>4</sub> COC <sub>2</sub> H <sub>5</sub>                                                                                                  | 3% H <sub>2</sub> O <sub>2</sub> , NaOH, CH <sub>3</sub> COCH <sub>3</sub> ,<br>32 h, 40°                                                            | р-нос₅н₄он                                                                                                                                                                                               | (82)                | 96                |

TABLE I. REACTIONS OF STRAIGHT-CHAIN KETONES (Continued)

| Reactant                              | Conditions                                                      | Product(s) and Yield(s) (%)                                                                                                                                                  |               | Refs.   |
|---------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|
| CH <sub>3</sub> O<br>HO               | PAA, H <sub>2</sub> O, pH 3, 1 h, 60°                           | CH <sub>3</sub> O <sub>2</sub> CCH <sub>3</sub> +                                                                                                                            | (37)          | 572     |
|                                       |                                                                 | CH <sub>3</sub> O<br>HO                                                                                                                                                      | (5)<br>(27)*  |         |
| H <sub>2</sub> N<br>CH <sub>3</sub> O | 1. 20% PAA, AcOH, 1 h, 60°<br>2. 48 h, 35°                      | CH <sub>3</sub> CONH<br>CH <sub>3</sub> O                                                                                                                                    | (50)<br>(36)* | 97      |
| H. H. COCH3                           | 85% MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 12 h,<br>25°       | н. Д.н                                                                                                                                                                       | (87)          | 68      |
| CH <sub>3</sub> CO                    | 85% MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 14 d,<br>45°       | CH <sub>3</sub> CO <sub>2</sub>                                                                                                                                              | (69)          | 780     |
| COCH3                                 | тграа                                                           | O <sub>2</sub> CCH <sub>3</sub>                                                                                                                                              | (—)           | 781     |
| H COCH <sub>3</sub>                   | PNPBA, CHCl <sub>3</sub> , 48 h, 25°                            | H O <sub>2</sub> CCH <sub>3</sub>                                                                                                                                            | (88)          | 679     |
| Н СОСН3                               | MCPBA, CHCI <sub>3</sub> , 20 h, 25°                            |                                                                                                                                                                              | (91)          | 782     |
| Сосна                                 | PBA, CHCl <sub>3</sub> , 163 h, 25°                             | CCCH <sub>3</sub>                                                                                                                                                            | (85)          | 13      |
| CH3CO<br>0                            | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 25°                    | CH <sub>A</sub> CO                                                                                                                                                           | (79)          | 110     |
| Сосн3                                 | 28% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> O, 12 h, 20° | Со2н                                                                                                                                                                         | (90)          | 202, 78 |
|                                       |                                                                 | + HO <sub>2</sub> (CH <sub>2</sub> ) <sub>4</sub> CO <sub>2</sub> H<br>+ HO <sub>2</sub> CC(CH <sub>3</sub> ) <sub>2</sub> (CH <sub>2</sub> ) <sub>4</sub> CO <sub>2</sub> H | (4)<br>trace  |         |

| Reactant                                                                                                            | Conditions                                                                                     | Product(s) and Yield(s) (%)                                                     |         | Refs.            |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------|------------------|
| COC <sub>2</sub> H <sub>5</sub>                                                                                     | 30% H2O2, NaOH, 1 h, 20-25°                                                                    | CO₂H +                                                                          | (59)    | 204              |
| $\sim$                                                                                                              |                                                                                                | HO <sub>2</sub> C(CH <sub>2</sub> ) <sub>4</sub> CO <sub>2</sub> H              | (4)     |                  |
| ot COCH3                                                                                                            | MCPBA, CHCl <sub>3</sub> , 12 h, 25°                                                           | O <sub>2</sub> CCH <sub>3</sub>                                                 | (76)    | 783              |
| O. COCH                                                                                                             | MCPBA, CHCl <sub>3</sub> , 12 h, 25°                                                           | O. OzCCH3                                                                       | (76)    | 783              |
| OH<br>COCH3                                                                                                         | TFPAA, Na2HPO4, CH2Cl2,<br>2 h, 0°                                                             | OH<br>O2CCH3                                                                    | (72)    | 85               |
| CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                                                                       | MCPBA, CH2Cl2, 12 h, 25°                                                                       | O + H + H + H + O + O + O + O + O + O +                                         | (—)     | 635              |
| CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                                                                       | MCPBA, CH2Cl2, 12 h, 25°                                                                       | O + H + O + O + O + O + O + O + O + O +                                         | (—)     | 635              |
| COCH3                                                                                                               | MCPBA, CHCl <sub>3</sub> , 3 d                                                                 | COCCH3                                                                          | (—)     | 784              |
| н, н                                                                                                                | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 72 h, 25°                                             | H. H. H. CH <sub>2</sub> O <sub>2</sub> CCH <sub>3</sub>                        | (69)    | 68               |
| O<br>CH-<br>CH-                                                                                                     | TFPAA (90%), Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 48 h, 25° | O<br>CH <sub>2</sub> OH<br>O <sub>2</sub> CCH <sub>3</sub>                      | (>68)   | 58               |
| CH <sub>2</sub> =CHCH <sub>2</sub> OCH <sub>2</sub> COCH <sub>2</sub> CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | MCPBA, CHCl <sub>3</sub> , 25°                                                                 | CH2OCH2O2CCH2CO2C2H5                                                            | (70-80) | 79a              |
| CH3O- O CI COCH3                                                                                                    | TFPAA (90%), Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 5 h, 20°  | CH <sub>3</sub> O <sup></sup> Cl<br>H O <sub>2</sub> CCH <sub>3</sub>           | (85)    | 382              |
| C <sub>2</sub> H <sub>5</sub>                                                                                       | 85% MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 1 h, 0°,<br>then HClO <sub>4</sub>                | C <sub>2</sub> H <sub>5</sub>                                                   | (79)    | 207              |
|                                                                                                                     | PBA, CH <sub>2</sub> Cl <sub>2</sub>                                                           | C <sub>2</sub> H <sub>5</sub> (CH <sub>2</sub> ) <sub>3</sub> COCH <sub>3</sub> | (100)   | 785, 786,<br>787 |

TABLE I. REACTIONS OF STRAIGHT-CHAIN KETONES (Continued)

| _               | Reactant                                                                                                     | Conditions                                                                                                                                | Product(s) and Yield(s) (%)                                                                                                                                                                                                                    | Refs.                   |
|-----------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                 | C <sub>2</sub> H <sub>5</sub>                                                                                | 85% MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 1 h, 0°,<br>then HClO <sub>4</sub>                                                           | C <sub>2</sub> H <sub>5</sub> . (80)                                                                                                                                                                                                           | ) 207                   |
|                 | COC <sub>3</sub> H <sub>7</sub> -i                                                                           | 1. TFPAA (90%), Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 3 h, 0°<br>2. 3 h, 25°                            | $O_2CC_3H_{7}i + O_2CO_2C_3H_{7}i \qquad (-)$                                                                                                                                                                                                  | ) 769                   |
|                 | n-C4H9COC4H9-n                                                                                               | 90% H <sub>2</sub> O <sub>2</sub> , polystyrene-AsO <sub>3</sub> H <sub>2</sub> ,                                                         | I:II = 50:50 (0)                                                                                                                                                                                                                               | ) 182                   |
|                 | i-C3H7CH2COCH2C3H7-i                                                                                         | dioxane, 32 h, 80°<br>TFPAA (90%), Na <sub>2</sub> HPO <sub>4</sub> ,                                                                     | <i>i</i> -C <sub>3</sub> H <sub>7</sub> CH <sub>2</sub> CO <sub>2</sub> CH <sub>2</sub> C <sub>3</sub> H <sub>7</sub> - <i>i</i> (81)                                                                                                          | 42, 221                 |
|                 | (CH <sub>3</sub> ) <sub>3</sub> Si(CH <sub>2</sub> ) <sub>2</sub> COC <sub>3</sub> H <sub>7</sub> - <i>i</i> | CH <sub>2</sub> Cl <sub>2</sub> , 30 min, heat<br>MCPBA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>4 h, 25° | $(CH_3)_3Si(CH_2)_2O_2CC_3H_7-i + (CH_3)_3Si(CH_2)_2CO_2C_3H_7-i$<br>I II (80)<br>I:II = 67:33                                                                                                                                                 | 94                      |
| C <sub>10</sub> | ∠_coc₀H₅                                                                                                     | TFPAA (90%), Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 30 min, reflux                                       | $\sum_{I} CO_2C_6H_5 + \sum_{I} O_2CC_6H_5 $ ()                                                                                                                                                                                                | 45                      |
|                 | <b>⊳</b> CH₃O₂CC₀H₄COCH₃                                                                                     | TFPAA, CHCl <sub>3</sub> , 5 h, 70°                                                                                                       | I:II = 97:3<br>o-CH <sub>3</sub> O <sub>2</sub> CC <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> CH <sub>3</sub> + o-CH <sub>3</sub> O <sub>2</sub> CC <sub>6</sub> H <sub>4</sub> O <sub>2</sub> CCH <sub>3</sub> (73)<br>I<br>II<br>III<br>III | 113                     |
|                 | <i>p</i> -CH <sub>3</sub> O <sub>2</sub> CC <sub>6</sub> H <sub>4</sub> COCH <sub>3</sub>                    | TFPAA, CHCl <sub>3</sub> , 5 h 70°                                                                                                        | p-CH <sub>3</sub> O <sub>2</sub> CC <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> CH <sub>3</sub> + $p$ -CH <sub>3</sub> O <sub>2</sub> CC <sub>6</sub> H <sub>4</sub> O <sub>2</sub> CCH <sub>3</sub> (77)<br>I II<br>I:II = 96:4               | 113                     |
|                 | HO <sub>2</sub> C<br>CH <sub>3</sub> O                                                                       | 20% PAA, AcOH, 48 h, 35°,<br>1 h, 60°                                                                                                     | HO <sub>2</sub> C<br>CH <sub>3</sub> O (53)                                                                                                                                                                                                    | 97                      |
|                 | CH <sub>3</sub> O <sub>2</sub> C<br>HO                                                                       | 20% PAA, AcOH, 48 h, 35°,<br>1 h, 60°                                                                                                     | CH <sub>3</sub> O <sub>2</sub> C (51)<br>(36)*                                                                                                                                                                                                 | 97                      |
|                 | no                                                                                                           | 3% H <sub>2</sub> O <sub>2</sub> , NaOH                                                                                                   | (20)                                                                                                                                                                                                                                           | 97                      |
|                 | CH <sub>3</sub> O<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>CI<br>COCH <sub>3</sub>                             | PAA, NaOAc, AcOH, 12 h,<br>40-42°                                                                                                         | CH <sub>3</sub> O OH (44)                                                                                                                                                                                                                      | 788                     |
|                 | C <sub>n</sub> H <sub>5</sub> COC <sub>3</sub> H <sub>7</sub> -n                                             | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,                                                               | $C_6H_5O_2CC_3H_{7}-n + C_6H_5CO_2C_3H_{7}-n$                                                                                                                                                                                                  | 15                      |
|                 |                                                                                                              | $H_2O_2$ , $CH_3OH$ , heat                                                                                                                | $C_{8}H_{5}CO_{2}H + C_{2}H_{5}CO_{2}H$                                                                                                                                                                                                        | 494                     |
|                 | C <sub>6</sub> H <sub>3</sub> COC <sub>3</sub> H <sub>7</sub> - <i>i</i>                                     | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>30 min, heat                                               | $C_6H_5CO_2C_3H_{7}-i + C_6H_5O_2CC_3H_{7}-i$<br>(63) (33)                                                                                                                                                                                     | 15, 124                 |
|                 | C <sub>6</sub> H <sub>5</sub> (CH <sub>2</sub> ) <sub>2</sub> COCH <sub>3</sub>                              | <i>t</i> -BuO <sub>2</sub> H, KOH<br>H <sub>2</sub> O <sub>2</sub> (0.4 M), NaOH,                                                         | $\begin{array}{ll} C_{b}H_{5}CO_{2}H & (40) (60) \\ C_{b}H_{5}(CH_{2})_{2}OH + C_{b}H_{5}CH_{2}CHO & (42) \end{array}$                                                                                                                         | * 124, 532<br>777       |
|                 | C6H3CH(CH3)COCH3                                                                                             | $C_2H_3OH-H_2O$ , 10 h, 55° $H_2O_2$ (0.4 M), NaOH,                                                                                       | $\frac{1}{C_6H_5CHOHCH_3 + C_6H_5COCH_3} $ (55)<br>(58)                                                                                                                                                                                        | 777                     |
|                 | p-CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> COCH <sub>3</sub>                            | $C_2H_5OH-H_2O$ , 28 h, 45°<br>$H_2O_2$ (0.4 M), NaOH,<br>$C_2H_5OH-H_2O$ , 6 h, 55°                                                      | I II I:II = 31:69 (40)<br>$p-CH_{3}C_{6}H_{4}CH_{2}OH + p-CH_{3}C_{6}H_{4}CHO + p-CH_{3}C_{6}H_{4}CO$<br>I II III III (95)<br>I:II:III = 10:17:73                                                                                              | D <sub>2</sub> H<br>777 |
|                 | Сссна                                                                                                        | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>5 h, heat                                                  |                                                                                                                                                                                                                                                | 658                     |

367

I II I:II = 50:50

| Reactant                                                            | Conditions                                                                                                                                                                | Product(s) and Yield(s) (%)                                                                                                                                                                                             |              | Refs. |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|
| COCH3                                                               | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>1 h, heat                                                                                  | O2CCH3                                                                                                                                                                                                                  | (97)         | 658   |
| Г <sup>СОСН</sup> 3                                                 |                                                                                                                                                                           | Г <sup>О2ССН3</sup>                                                                                                                                                                                                     |              |       |
| $\bigcirc$                                                          | РВА                                                                                                                                                                       | $\bigcirc$                                                                                                                                                                                                              | (>74)        | 789   |
| <i>p</i> -CH₃OC₀H₄CH₂COCH₃                                          | $H_2O_2$ (0.4 M), NaOH,<br>$C_2H_5OH-H_2O$ , 4 h, 55°                                                                                                                     | p-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> OH + $p$ -CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> CHO<br>I II<br>+ $p$ -CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> H<br>III | (62)         | 777   |
| CH3COCHOHCH2C6H3                                                    | 1. 30-35% H <sub>2</sub> O <sub>2</sub> , NaOH,<br>CH <sub>3</sub> OH, 5 min, 0°                                                                                          | 1:11:111 = 26:34:40<br>$C_6H_5CH_2CO_2CH_3$<br>$+ C_6H_5CO_2CH_3$                                                                                                                                                       | (70)<br>(20) | 72    |
| C <sub>6</sub> H <sub>3</sub> CHOHCH <sub>2</sub> COCH <sub>3</sub> | 2. CH <sub>2</sub> N <sub>2</sub><br>DNPBA, TBP, ClCH <sub>2</sub> CH <sub>2</sub> Cl,<br>3 h, heat                                                                       | + C <sub>6</sub> H <sub>5</sub> CHO<br>C <sub>6</sub> H <sub>5</sub> CHOHCH <sub>2</sub> O <sub>2</sub> CCH <sub>3</sub> +<br>I                                                                                         | (10)<br>(80) | 85    |
| CH <sub>3</sub> O COCH <sub>3</sub><br>OCH <sub>3</sub>             | 36–40% PAA, NaOAc, AcOH,<br>12 h, 40–42°                                                                                                                                  | $C_{6}H_{3}CH(O_{2}CCH_{3})CH_{2}OH$ II<br>1:II = 75:25<br>$CH_{3}O \qquad \qquad$               |              | 788   |
| COCH <sub>3</sub><br>OCH <sub>3</sub><br>CH <sub>3</sub> O          | 90% H <sub>2</sub> O <sub>2</sub> , [2, 4-(O <sub>2</sub> N) <sub>2</sub> C <sub>6</sub> H <sub>3</sub> Se] <sub>2</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 81 h, 25° | O <sub>2</sub> CCH <sub>3</sub><br>OCH <sub>3</sub><br>CH <sub>3</sub> O                                                                                                                                                | (65)         | 628   |
| COCH <sub>3</sub><br>OCH <sub>3</sub>                               | 90% H <sub>2</sub> O <sub>2</sub> , (2-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub><br>CH <sub>2</sub> Cl <sub>2</sub> , 168 h, 25°                     | O <sub>2</sub> CCH <sub>3</sub><br>OCH <sub>3</sub><br>OCH <sub>3</sub>                                                                                                                                                 | (67)         | 628   |
| COCH3                                                               | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>1.75 h, heat                                                                               | O2CCH3                                                                                                                                                                                                                  | (72)         | 790   |
| CH <sub>3</sub> COCH <sub>2</sub> H                                 | TFPAA (90%), CH <sub>2</sub> Cl <sub>2</sub> , 3 h, 25°                                                                                                                   | CH <sub>3</sub> CO <sub>2</sub> CH <sub>2</sub><br>NO                                                                                                                                                                   | (56)         | 65    |
| F COCH3                                                             | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 3 d, 25°                                                                                                                         | F O <sub>2</sub> CCH <sub>3</sub>                                                                                                                                                                                       | (77)         | 791   |
| <sup>13</sup> CH <sub>3</sub>                                       | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 64 h, 25°                                                                                                                        | <sup>13</sup> CH <sub>3</sub> , 0                                                                                                                                                                                       | (77)         | 107   |

TABLE I. REACTIONS OF STRAIGHT-CHAIN KETONES (Continued)

| Reactant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conditions                                                | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Refs.     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| $\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $ | 80% MCPBA, CH <sub>2</sub> Cl <sub>2</sub> ,<br>12 h, 25° | $ \begin{array}{c}  & & & & & & & \\  & & & & & & & \\  & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 635       |
| CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80% MCPBA, CH <sub>2</sub> Cl <sub>2</sub> ,<br>12 h, 25° | HOCH <sub>2</sub> O (10)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (—) 635   |
| CO <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80% MCPBA, CH <sub>2</sub> Cl <sub>2</sub> ,<br>12 h, 25° | $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ CO_2 CH_3 \\ + \\ \end{array} \begin{array}{c} 0 \\ 0 \\ H \\ + \\ \end{array} \begin{array}{c} 0 \\ H \\ 0 \\ H \\ \end{array} \begin{array}{c} 0 \\ H \\ H \\ \end{array} \begin{array}{c} 0 \\ CO_2 CH_3 \\ H \\ \end{array} \begin{array}{c} 0 \\ H \\ \end{array} \begin{array}{c} 0 \\ CO_2 CH_3 \\ H \\ \end{array} \begin{array}{c} 0 \\ H \\ \end{array} \begin{array}{c} 0 \\ CO_2 CH_3 \\ H \\ \end{array} \begin{array}{c} 0 \\ CO_2 CH_3 \\ H \\ \end{array} $ | (—) 635   |
| HO <sub>2</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, 4 h             | $O \xrightarrow{(CH_3)_2C} O$<br>$CO_2CH_3 OH$<br>$HO_2C \xrightarrow{CO_2H} OH$                                                                                                                                                                                                                                                                                                                                                                                                                                   | (100) 106 |
| $\begin{array}{c} CH_{3}CO \\ I \\ + \\ CH_{3}CO \\ + \end{array} \qquad 1: II = 91:9 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PBA, CHCl <sub>3</sub> , 10 d, 25°                        | $H_{3}CO_{2}$ $H_{1}CO_{2}$ $+$ $H_{1}CO_{2}$ $H_{1}III:IV = 91:9$                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (75) 792  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PNPBA, CHCl <sub>3</sub> , 48 h, 25°                      | $ \begin{array}{c}     IV \\                               $                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (89) 679  |

TABLE I. REACTIONS OF STRAIGHT-CHAIN KETONES (Continued)

| Reactant                                                                                                     | Conditions                                                                                                                    | Product(s) and Yield(s) (%)                                                                                                                                                                                                             |                        | Re  |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----|
| CH2COCH3                                                                                                     | мсрва                                                                                                                         | CH <sub>2</sub> O <sub>2</sub> CCH <sub>3</sub>                                                                                                                                                                                         | (84) 7                 | 793 |
| COCH3                                                                                                        | 36% PAA, NaOAc, CHCl <sub>3</sub> ,<br>12 h, 25°                                                                              | O2CCH3                                                                                                                                                                                                                                  | (—) 7                  | 794 |
| COC <sub>3</sub> H <sub>7</sub> - <i>i</i>                                                                   | 1. TFPAA (90%), Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 3 h, 0°<br>2. 3 h, 25°                | $\bigcirc O_2 CC_3 H_7 i + \bigcirc CO_2 C_3 H_7 i$                                                                                                                                                                                     | (—) 7                  | 769 |
|                                                                                                              |                                                                                                                               | I II<br>I:II = 60:40                                                                                                                                                                                                                    |                        |     |
| COC <sub>4</sub> H <sub>9</sub> -t                                                                           | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>1 h, heat                                      | CO <sub>2</sub> C <sub>4</sub> H <sub>9</sub> -t                                                                                                                                                                                        | (40) 8                 | 86  |
| CH <sub>3</sub> CO(CH <sub>2</sub> ) <sub>6</sub> CO <sub>2</sub> CH <sub>3</sub>                            | K <sub>2</sub> S <sub>2</sub> O <sub>8</sub> , H <sub>2</sub> SO <sub>4</sub> , H <sub>2</sub> O, 3 h, 5°                     | HO(CH <sub>2</sub> ) <sub>6</sub> CO <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                       | (93) 4                 | 41  |
| CH3O2C CH2COCH3                                                                                              | TFPAA, Na2HPO4, CH2Cl2                                                                                                        | CH <sub>3</sub> O <sub>2</sub> C CH <sub>2</sub> O <sub>2</sub> CCH <sub>3</sub>                                                                                                                                                        | (64) 1                 | 141 |
| CoCH <sub>3</sub><br>C <sub>2</sub> H <sub>5</sub> O <sub>2</sub> C C <sub>3</sub> H <sub>7</sub> - <i>i</i> | TFPAA (90%), Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 12 h, 25°                                | O <sub>2</sub> CCH <sub>3</sub><br>C <sub>2</sub> H <sub>5</sub> O <sub>2</sub> C C <sub>3</sub> H <sub>7</sub> <i>i</i>                                                                                                                | (89) 7                 | 79  |
| (R)<br>n-C <sub>6</sub> H <sub>13</sub> CHOHCH <sub>2</sub> COCH <sub>3</sub>                                | DNPBA, Na <sub>2</sub> HPO <sub>4</sub> , TBP,<br>CICH <sub>2</sub> CH <sub>2</sub> Cl, 3 h, reflux                           | (S)<br>n-C6H13CH(O2CCH3)CH2OH<br>I                                                                                                                                                                                                      | (70) 8                 | 85  |
| (CH <sub>3</sub> ) <sub>3</sub> Si(CH <sub>2</sub> ) <sub>2</sub> COC <sub>4</sub> H <sub>9</sub> -1         | MCPBA, Na <sub>2</sub> HPO <sub>4</sub> , TBP,<br>CH <sub>2</sub> Cl <sub>2</sub> , 4 h, reflux                               | (CH <sub>3</sub> ) <sub>3</sub> Si(CH <sub>2</sub> ) <sub>2</sub> O <sub>2</sub> CC <sub>4</sub> H <sub>9</sub> - <i>t</i> + (CH <sub>3</sub> ) <sub>3</sub> Si(CH <sub>2</sub> ) <sub>2</sub> CO <sub>2</sub> C <sub>4</sub> H<br>I II | v-1<br>(79) 94         | 94  |
|                                                                                                              |                                                                                                                               | 1:11 = 33:67                                                                                                                                                                                                                            |                        |     |
| Br<br>COCH <sub>3</sub>                                                                                      | TFPAA (98%). Na2HPO4.<br>CH2Cl2, 15 h, 25°                                                                                    | Br<br>O <sub>2</sub> CCH <sub>3</sub>                                                                                                                                                                                                   | (59) 74                | 95  |
| O <sub>2</sub> N O <sub>2</sub> CNH <sub>2</sub><br>NHCHO                                                    | 6% PAA, H2SO4, 10 h, 20°                                                                                                      | O <sub>2</sub> N CO <sub>2</sub> H                                                                                                                                                                                                      | (90) 7                 | 74  |
| COCH3                                                                                                        | TFPAA, Na2HPO4, CH2Cl2,                                                                                                       | O <sub>2</sub> CCH <sub>3</sub>                                                                                                                                                                                                         | (77) 7                 | 796 |
| C <sub>6</sub> H <sub>5</sub>                                                                                | 4 h, reflux to 25°                                                                                                            | C <sub>6</sub> n <sub>5</sub>                                                                                                                                                                                                           |                        |     |
| C6H3CO                                                                                                       | 4 h, reflux to 25°<br>TFPAA (85%), Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 1 h, heat          | CH <sub>3</sub> O <sub>2</sub> C +                                                                                                                                                                                                      | (69) 7                 | 797 |
| C4H3<br>CH3CO                                                                                                | 4 h, reflux to $25^{\circ}$<br>TFPAA (85%), Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 1 h, heat | CH <sub>3</sub> O <sub>2</sub> C<br>CH <sub>3</sub> O <sub>2</sub> C<br>CH <sub>3</sub> CO <sub>2</sub><br>CH <sub>3</sub> CO <sub>2</sub>                                                                                              | (69) 7<br>(4)<br>(21)* | 797 |

| Reactant                                                                          | Conditions                                                                                                                                         | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | Refs.            |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|
| CH <sub>3</sub> O <sub>2</sub> C<br>CH <sub>3</sub> O                             | 1. 20% PAA, AcOH, 48 h, 35°<br>2. 1 h, 60°                                                                                                         | CH <sub>3</sub> O <sub>2</sub> C<br>CH <sub>3</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (60)           | 97               |
| CH <sub>3</sub> CONH<br>CH <sub>3</sub> O                                         | 1. 20% PAA, AcOH, 48 h, 35°<br>2. 1 h, 60°                                                                                                         | CH <sub>3</sub> CONH<br>CH <sub>3</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (70)<br>(10)*  | 97               |
| CH <sub>3</sub> CO<br>HO                                                          | 6% H <sub>2</sub> O <sub>2</sub> , NaOH, 5 h, 35–40°                                                                                               | HO<br>HO<br>HO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (81)           | 96               |
|                                                                                   | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, H <sub>2</sub> O,                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (75)           | 95               |
| C6H3CH2CH(CH3)COCH3<br>C6H3COC4H9- <i>t</i>                                       | PBA, CHCl <sub>3</sub> , 15 d, 25°<br>TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>1 h, reflux<br>$r = 10^{-10}$ | $C_{6}H_{3}CH_{2}CH(CH_{3})O_{2}CCH_{3}$ $C_{6}H_{5}O_{2}CC_{4}H_{9}-t + C_{6}H_{5}CO_{2}C_{4}H_{9}-t$ (77) (2) (2) (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (84)<br>(12)*  | 799<br>15, 124   |
| C <sub>6</sub> H <sub>3</sub> C(CH <sub>3</sub> ) <sub>2</sub> COCH <sub>3</sub>  | $H_2O_2$ (0.4 M), NaOH,                                                                                                                            | С6Н3С(СН3)2ОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +(60)* (13)    | 777              |
| C <sub>6</sub> H <sub>5</sub> CHOHCH <sub>2</sub> COC <sub>2</sub> H <sub>5</sub> | $C_2H_3OH-H_2O$ , 64 h, 45°<br>DNPBA, TBP, CICH <sub>2</sub> CH <sub>2</sub> Cl,                                                                   | C6H5CHOHCH2CO2C2H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +(83)*<br>(83) | 85               |
|                                                                                   | 3 h, heat                                                                                                                                          | $I + C_{6}H_{5}CHOHCH_{2}O_{2}CC_{2}H_{5}$ $II + C_{6}H_{5}CH(O_{2}CC_{2}H_{5})CH_{2}OH$ $III$ $I:II:III = 68:23:9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                  |
| CH <sub>3</sub> O<br>OC <sub>2</sub> H <sub>5</sub>                               | PAA, NaOAc, AcOH,<br>12 h, 40-42°                                                                                                                  | CH <sub>3</sub> O<br>OC <sub>2</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (43)           | 788              |
| C <sub>2</sub> H <sub>5</sub> O<br>COCH <sub>3</sub>                              | PAA, NaOAc, AcOH,<br>12 h, 40-42°                                                                                                                  | C <sub>2</sub> H <sub>5</sub> O<br>OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (23)           | 788              |
| COCH3<br>CH30<br>OCH3<br>OCH3                                                     | 35% PAA, HClO4, Ac2O,<br>3 h, 5°                                                                                                                   | $CH_{3}O \xrightarrow{O_{2}CCH_{3}}{OCH_{3}} + CH_{3}O \xrightarrow{O}{OCH_{3}} OCH_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (60)           | 607              |
| COCH                                                                              | 30% H <sub>2</sub> O <sub>2</sub> , 5% HClO <sub>4</sub> , TsOH,<br>AcOH, 3 h, 25°                                                                 | I:II = 92:8<br>I:II = 83:17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (60)           | 675              |
| OCH <sub>3</sub><br>OCH <sub>3</sub><br>OCH <sub>3</sub>                          | 35% PAA, HClO <sub>4</sub> , Ac <sub>2</sub> O,<br>2 h, 30°                                                                                        | O2CCH3<br>OCH3<br>OCH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (96)           | 607, 628,<br>800 |
| COCH <sub>3</sub><br>OCH <sub>3</sub><br>OCH <sub>3</sub>                         | 35% PAA, HClO <sub>4</sub> , Ac <sub>2</sub> O,<br>3 h. 1°                                                                                         | $CH_{3O} \xrightarrow{O_2CCH_3} + \underbrace{O_1OCH_3}_{OCH_3} + \underbrace{CH_{3O}}_{OCH_3} + CH_$ |                | 607              |

| Reactant                                                                    | Conditions                                                 | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | Refs.    |
|-----------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|
| CH30<br>CH30<br>OCH3                                                        | 35% PAA, HClO <sub>4</sub> , Ac <sub>2</sub> O,<br>5 h, 5° | $CH_{3}O + CH_{3}O + CH_{$ |       | 607      |
| CO <sub>2</sub> CH <sub>3</sub><br>-COCH <sub>3</sub><br>-COCH <sub>3</sub> | TFPAA, Na2HPO4, CH2Cl2,<br>10 h, 25°                       | (65) (10) $(10)$ $(10)$ $(10)$ $(10)$ $(10)$ $(10)$ $(10)$ $(10)$ $(10)$ $(10)$ $(10)$ $(10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (65)  | 801      |
| C <sub>2</sub> H <sub>5</sub><br>CH <sub>2</sub> COCH <sub>3</sub>          | PBA, CHCl <sub>3</sub> , 14 d, 25°                         | CH2O2CCH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (78)  | 98       |
| Br Br C H                                                                   | MCPBA, CHCl <sub>3</sub>                                   | Br Br C H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ()    | 832, 803 |
| СССН3                                                                       | МСРВА                                                      | Lozcch3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (100) | 804      |
| ĊOCH3                                                                       | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 25°               | Ö <sub>2</sub> CCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (100) | 657      |
| СССН3                                                                       | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 25°               | $\bigcirc \bigcirc $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 657      |
| COCH3                                                                       | no data                                                    | (57) (27)<br>$\bigcirc O_2CCH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (—)   | 805      |
| COCH <sub>3</sub><br>O <sub>2</sub> CCH <sub>3</sub>                        | ТГРАА                                                      | O <sub>2</sub> CCH <sub>3</sub><br>O <sub>2</sub> CCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (70)  | 806      |
| COCH3                                                                       | MCPBA, CHCl <sub>3</sub> , 20 h, 25°                       | O2CCH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (76)  | 807      |
| O_COCH3                                                                     | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 4 d, 25°          | O_O2CCH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (>60) | 75       |
|                                                                             | MCPBA, CH <sub>2</sub> Cl <sub>2</sub>                     | O = O = O = O = O = O = O = O = O = O =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (—)   | 635      |



| Reactant                                                                                                        | Conditions                                                                                                                                             | Product(s) and Yield(s) (%)                                                                                                                                          |         | Refs |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|
| CoCH <sub>3</sub><br>C <sub>6</sub> H <sub>5</sub> C <sub>2</sub> H <sub>5</sub>                                | PBA, CHCl <sub>3</sub> , 14 d, 25°                                                                                                                     | O <sub>2</sub> CCH <sub>3</sub><br>C <sub>6</sub> H <sub>5</sub> C <sub>2</sub> H <sub>5</sub>                                                                       | ()      | 816  |
| CH <sub>3</sub> CO <sup>N</sup><br>COCH <sub>3</sub>                                                            | TFPAA, Na2HPO4, CH2Cl2                                                                                                                                 | CH <sub>3</sub> CO <sub>2</sub><br>COCH <sub>3</sub>                                                                                                                 | (20–25) | 722  |
| CoCH3                                                                                                           | TFPAA (90%), Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 6 h, 10–25°                                                       | C <sub>6</sub> H <sub>5</sub>                                                                                                                                        | (77)    | 817  |
| C6H5COC5H11                                                                                                     | TFPAA, Na2HPO4, CH2Cl2,                                                                                                                                | $C_6H_5CO_2C_5H_{11} + C_6H_5O_2CC_5H_{11}$                                                                                                                          |         | 15   |
| p-CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> COC <sub>4</sub> H <sub>9</sub> -n                              | 1 h, heat<br>MCPBA, CF <sub>3</sub> CO <sub>2</sub> H, CH <sub>2</sub> Cl <sub>2</sub> ,<br>8 h, $0-25^{\circ}$                                        | (48) (44)<br>p-CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> O <sub>2</sub> CC <sub>4</sub> H <sub>9</sub> - <i>n</i>                                                | (100)   | 742  |
| CCCH <sub>3</sub>                                                                                               | MCPBA, CHCl <sub>3</sub> , 24 h, reflux                                                                                                                | O <sub>2</sub> CCH <sub>3</sub>                                                                                                                                      | (76)    | 764  |
| CH <sub>3</sub> COCH(CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> )COCH <sub>3</sub>                           | MPPA, ether, 7 d                                                                                                                                       | $CH_{3}CO(CH_{2})_{2}C_{6}H_{5}$<br>+ C_{6}H_{5}CH_{2}CO_{2}H<br>+ C_{6}H_{5}CH_{2}COCOCH_{3}                                                                        | (—)     | 76   |
| CH <sub>3</sub> CO(CH <sub>2</sub> ) <sub>2</sub> CO <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>4 h, heat                                                               | + CH <sub>3</sub> CO <sub>2</sub> H<br>CH <sub>3</sub> CO <sub>2</sub> (CH <sub>2</sub> ) <sub>2</sub> CO <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | (63)    | 818  |
| CH <sub>3</sub> CO                                                                                              | MCPBA, TFAA-CHCl <sub>3</sub> ,<br>2 d, 25°                                                                                                            | CH <sub>3</sub> CO <sub>2</sub> CCH <sub>3</sub><br>O <sub>2</sub> CCH <sub>3</sub>                                                                                  | (60)    | 819  |
| OCH3<br>OCH3                                                                                                    | 36% H <sub>2</sub> O <sub>2</sub> , HCO <sub>2</sub> H, 26 h,<br>-5-0°                                                                                 | OCH <sub>3</sub><br>OCH <sub>3</sub>                                                                                                                                 | (60)    | 820  |
| C <sub>2</sub> H <sub>5</sub> O<br>COCH <sub>3</sub><br>OC <sub>2</sub> H <sub>5</sub>                          | PAA, NaOAc, AcOH, 12 h,<br>40-42°                                                                                                                      | C <sub>2</sub> H <sub>5</sub> O<br>OC <sub>2</sub> H <sub>5</sub> O<br>OC <sub>2</sub> H <sub>5</sub>                                                                | (45)    | 788  |
| CH <sub>3</sub> O<br>C <sub>2</sub> H <sub>5</sub> COCH <sub>3</sub>                                            | 1. 30% PAA, TsOH, AcOH,<br>3 h, 60–65°<br>2. 24 h, 20°                                                                                                 | CH30<br>C2H5<br>OCH3                                                                                                                                                 | (47)    | 591  |
| CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>OCH <sub>3</sub>                                 | 90% H <sub>2</sub> O <sub>2</sub> , (2-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 48 h, 25° | CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>OCH <sub>3</sub> O                                                                                    | (81)    | 628  |
|                                                                                                                 | 35% PAA, 15 min, 5-6°                                                                                                                                  | "                                                                                                                                                                    | (70)    | 607  |
| CH30                                                                                                            |                                                                                                                                                        | CH <sub>3</sub> O<br>O <sub>2</sub> CCH <sub>3</sub>                                                                                                                 | (22)    |      |
| CH30 OCH3                                                                                                       | CH <sub>2</sub> Cl <sub>2</sub> , 140 h, 25°                                                                                                           | сн30 сн30                                                                                                                                                            | (27)*   | 628  |

| Reactant                                                              | Conditions                                                                                        | Product(s) and Yield(s) (%)                                                          |       | Refs.    |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------|----------|
| O H O                                                                 | TFPAA, Na2HPO4                                                                                    | O H O                                                                                | (>55) | 57       |
| CH <sub>3</sub> CO H<br>C₀H <sub>3</sub> COCH₂N(C₂H₅)₂                | 30% H <sub>2</sub> O <sub>2</sub> , CH <sub>3</sub> OH, 30 min, 0°                                | СH <sub>3</sub> CO <sub>2</sub> Н<br>С <sub>6</sub> H <sub>3</sub> CO <sub>2</sub> H | (95)  | 73       |
| C <sub>3</sub> H <sub>7</sub> -n<br>CH <sub>2</sub> COCH <sub>3</sub> | PBA, CHCl <sub>3</sub> , 14 d, 25°                                                                | C <sub>3</sub> H <sub>7</sub> -n<br>CH <sub>2</sub> O <sub>2</sub> CCH <sub>3</sub>  | (74)  | 98       |
| CD3COCH3                                                              | 85% MCPBA, CH <sub>2</sub> Cl <sub>2</sub> ,<br>64 h, 25°                                         | CD <sub>3</sub> .<br>O <sub>2</sub> CCH <sub>3</sub>                                 | (77)  | 107      |
|                                                                       | TFPAA (90%), Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 3 h, 25°     | $O = H^{Br}$<br>$O_2CCH_3$                                                           | (90)  | 821      |
| COCH <sub>3</sub>                                                     | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 25°                                                      | (5) +<br>O <sub>2</sub> CCH <sub>3</sub>                                             |       | 657, 804 |
|                                                                       |                                                                                                   | (25) + (2)                                                                           |       |          |
|                                                                       |                                                                                                   | $\begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + $                   |       |          |
|                                                                       |                                                                                                   | Сно о́<br>(5) (2)                                                                    |       |          |
| COCH                                                                  | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 25°                                                      | Ch.                                                                                  | (100) | 657      |
| H COCH3                                                               | 30% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , <i>t</i> -BuOH,<br>24 h, 25° |                                                                                      | (81)  | 81       |
| H COCH <sub>3</sub>                                                   | 30% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , <i>t</i> -BuOH,<br>24 h, 25° |                                                                                      | (92)  | 82       |
| н                                                                     |                                                                                                   |                                                                                      |       |          |
| Reactant                                                                                                                                                                                                                               | Conditions                                                                                                                                                                                              | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                           |                      | Refs.                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------|
| CH <sub>3</sub> CO.<br>CH <sub>3</sub> O <sub>2</sub> C····                                                                                                                                                                            | TFPAA (90%), Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 3 h, 25°                                                                                                           | CH <sub>3</sub> CO <sub>2</sub> OH<br>CH <sub>3</sub> O <sub>2</sub> C                                                                                                                                                                                                                                | (87)                 | 822                                           |
| O<br>H<br>COCH3                                                                                                                                                                                                                        | TFPAA (90%), Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 2.5 h, 25–30°                                                                                                      | Pr<br>H O2CCH3                                                                                                                                                                                                                                                                                        | (92)                 | 821                                           |
|                                                                                                                                                                                                                                        | 77% PBA, CHCl <sub>3</sub> , 12 d, 25°                                                                                                                                                                  | $\bigcup_{H}^{O_2CCH_3}$                                                                                                                                                                                                                                                                              | (55)                 | 823                                           |
|                                                                                                                                                                                                                                        | 77% PBA, CHCl <sub>3</sub> , 12 d, 25°                                                                                                                                                                  | H<br>H<br>H                                                                                                                                                                                                                                                                                           | (72)                 | 823                                           |
|                                                                                                                                                                                                                                        | 77% PBA, CHCl <sub>3</sub> , 12 d, 25°                                                                                                                                                                  | H H C2CCH3                                                                                                                                                                                                                                                                                            | (55)                 | 823                                           |
| CO <sub>2</sub> CH <sub>3</sub><br>COCH <sub>3</sub>                                                                                                                                                                                   | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 6 h, heat                                                                                                                                                      | CO <sub>2</sub> CH <sub>3</sub><br>O <sub>2</sub> CCH <sub>3</sub>                                                                                                                                                                                                                                    | (65)                 | 64                                            |
| C <sub>2</sub> H <sub>5</sub> O <sub>2</sub> CCH <sub>2</sub>                                                                                                                                                                          | PBA, CHCl <sub>3</sub> , 15 d, 25°                                                                                                                                                                      | C <sub>2</sub> H <sub>5</sub> O <sub>2</sub> CCH <sub>2</sub>                                                                                                                                                                                                                                         | (88)                 | 692, 824                                      |
| CH2COCH3                                                                                                                                                                                                                               | TFPAA                                                                                                                                                                                                   | CO <sub>2</sub> H                                                                                                                                                                                                                                                                                     | (—)                  | 825                                           |
| CH <sub>3</sub> CO(CH <sub>2</sub> ) <sub>8</sub> CH=CH <sub>2</sub>                                                                                                                                                                   | [(CH <sub>3</sub> );Si] <sub>2</sub> O <sub>2</sub> , SnCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>9 h. 25°                                                                                 | CH <sub>3</sub> CO <sub>2</sub> (CH <sub>2</sub> ) <sub>*</sub> CH=CH <sub>2</sub>                                                                                                                                                                                                                    | (25)                 | 220                                           |
| CH <sub>2</sub> C(CH <sub>3</sub> ) <sub>2</sub> OH                                                                                                                                                                                    | 1. PBA, TsOH, CHCl <sub>3</sub> , 6 h, 0°<br>2. 72 h, 10–15°                                                                                                                                            | CH <sub>2</sub> C(CH <sub>3</sub> ) <sub>2</sub> OH<br>CH <sub>2</sub> O <sub>2</sub> CCH <sub>3</sub>                                                                                                                                                                                                | (80)                 | 826                                           |
| OH<br>CH <sub>2</sub> COC <sub>4</sub> H <sub>9</sub> - <i>t</i>                                                                                                                                                                       | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>1 h, heat                                                                                                                | OH<br>CH <sub>2</sub> CO <sub>2</sub> C <sub>4</sub> H <sub>9</sub> -1                                                                                                                                                                                                                                | (45)                 | 86                                            |
| CH <sub>3</sub> CO(CH <sub>2</sub> ) <sub>6</sub> CO <sub>2</sub> C <sub>3</sub> H <sub>7</sub> - <i>i</i>                                                                                                                             | $K_2S_2O_8$ , $H_2SO_4$ , $CH_3OH-H_2O$ ,<br>5 h. 5-10°                                                                                                                                                 | CH <sub>3</sub> CO <sub>2</sub> (CH <sub>2</sub> ) <sub>6</sub> CO <sub>2</sub> C <sub>3</sub> H <sub>7</sub> - <i>i</i>                                                                                                                                                                              | (89)                 | 827                                           |
| CH <sub>2</sub> COCH <sub>3</sub><br>CH <sub>2</sub> CH(OCH <sub>3</sub> ) <sub>2</sub>                                                                                                                                                | 70% MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 20 h,<br>20-30°                                                                                                                                            | CH <sub>2</sub> O <sub>2</sub> CCH <sub>3</sub><br>CH <sub>2</sub> CH(OCH <sub>3</sub> ) <sub>2</sub>                                                                                                                                                                                                 | (75)                 | 637, 638                                      |
| C <sub>13</sub><br>p-FC <sub>6</sub> H <sub>4</sub> COC <sub>6</sub> H <sub>4</sub> F-p<br>o-ClC <sub>6</sub> H <sub>4</sub> COC <sub>6</sub> H <sub>4</sub> Cl-p<br>o-ClC <sub>6</sub> H <sub>4</sub> COC <sub>6</sub> H <sub>5</sub> | Na <sub>2</sub> CO <sub>4</sub> , CF <sub>3</sub> CO <sub>2</sub> H, 25°, 20 h<br>40% PAA, H <sub>2</sub> SO <sub>4</sub> , 4-6 d, 25°<br>40% PAA, H <sub>2</sub> SO <sub>4</sub> , AcOH,<br>4-6 d, 25° | <i>p</i> -FC <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> C <sub>6</sub> H <sub>4</sub> F- <i>p</i><br><i>o</i> -ClC <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> C <sub>6</sub> H <sub>4</sub> Cl- <i>p</i><br><i>o</i> -ClC <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | (96)<br>(80)<br>(71) | 763a<br>125<br>125                            |
| C6H3COC6H3                                                                                                                                                                                                                             | 4-0 d, 25<br>TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>1 h, heat                                                                                                   | C <sub>6</sub> H <sub>5</sub> CO <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                           | (88)                 | 14, 42,<br>574, 734,<br>771, 828,<br>829, 830 |

TABLE I. REACTIONS OF STRAIGHT-CHAIN KETONES (Continued)

| Reactant                                                                        | Conditions                                                                                         | Product(s) and Yield(s) (%)                                                                               |                | Refs.      |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------|------------|
|                                                                                 | MCPBA (2 eq, solid state,<br>24 h. 25°                                                             |                                                                                                           | (85)           | 740        |
| <b>∽</b> HOC₀H₄COC₀H₅                                                           | NaBO <sub>3</sub> , TFAA, 4–8 h, 25°<br>30% H <sub>2</sub> O <sub>2</sub> , NaOH, 1.5 h            | $^{"}_{o-\text{HOC}_{b}\text{H}_{4}\text{OH}} + \text{C}_{b}\text{H}_{5}\text{CO}_{2}\text{H}$            | (81)<br>+(83)* | 114<br>772 |
| p-HOC <sub>6</sub> H <sub>4</sub> COC <sub>6</sub> H <sub>5</sub>               | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, 1 h, 70°                                                 | C <sub>6</sub> H <sub>5</sub> CO <sub>2</sub> H                                                           | (20)<br>(73)*  | 772        |
| BrCOCH <sub>3</sub>                                                             | TFPAA                                                                                              | BrO <sub>2</sub> CCH <sub>3</sub>                                                                         | (59)           | 831        |
| CICH <sub>2</sub> CO<br>N<br>CO <sub>2</sub> CH <sub>3</sub>                    | MCPBA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>8 h, 20°            | CICH <sub>2</sub> CO <sub>2</sub><br>CO <sub>2</sub> CH <sub>3</sub><br>CO <sub>2</sub> CH <sub>3</sub>   | (22)           | 121        |
| CICH <sub>2</sub> CO<br>N<br>CH <sub>3</sub>                                    |                                                                                                    | CICH <sub>2</sub> CO <sub>2</sub> CO <sub>2</sub> CH <sub>3</sub><br>N<br>CO <sub>2</sub> CH <sub>3</sub> | (66)           |            |
| CH30<br>CH30<br>CH30<br>CH30<br>CH30<br>CH30<br>CH30<br>CH30                    | 30% $H_2O_2$ , NaOH, 2.25 h, 5°                                                                    | CH30 OH                                                                                                   | (73)           | 832        |
| HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>H | 30% H <sub>2</sub> O <sub>2</sub> , 4% NaOH, 2 h, 5°                                               | HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>H                           | (84)           | 832        |
|                                                                                 | 30% H <sub>2</sub> O <sub>2</sub> , 5% NaOH, 2.25 h, 5°                                            |                                                                                                           | (—)            | 832        |
| CH <sub>3</sub> O<br>CH <sub>3</sub> CO<br>HO                                   | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, pyridine,<br>2 h, 25°                                    | CH <sub>3</sub> O<br>HO<br>HO                                                                             | (44)           | 832        |
| HO<br>CH <sub>3</sub> O                                                         | H <sub>2</sub> O <sub>2</sub> , NaOH, 1 h, 25°                                                     | HO<br>HO<br>CH <sub>3</sub> O                                                                             | (56)           | 815        |
| BrCOCH3                                                                         | TFPAA (100%), Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 10 h, reflux | BrO <sub>2</sub> CCH <sub>3</sub>                                                                         | (94)           | 833, 834   |
| CH <sub>3</sub> CO                                                              | MCPBA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>1.5 h, 60°          | CH <sub>3</sub> CO <sub>2</sub><br>CH <sub>3</sub> CO <sub>2</sub><br>CH <sub>3</sub>                     | (3)            | 121        |

| Reactant                                                                                                                                                                                                                                                                                                                                                                                       | Conditions                                                                                                                           | Product(s) and Yield(s) (%)                                                                                                                                         |               | Refs.          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|
| CH <sub>3</sub> CO<br>N                                                                                                                                                                                                                                                                                                                                                                        | мсрва                                                                                                                                |                                                                                                                                                                     | (0)           | 835            |
| CO <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                  | TFPAA, Na2HPO4, CH2Cl2,<br>4 h, reflux                                                                                               | CO <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub><br>O <sub>2</sub> CCH <sub>3</sub>                                                                    | (25)          | 818            |
| p-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> COCHCH <sub>2</sub> O <sub>2</sub> CCH <sub>3</sub><br> <br>NHCOCH <sub>3</sub>                                                                                                                                                                                                                                                                | 6% PAA, H <sub>2</sub> SO <sub>4</sub> , 10 h, 20°                                                                                   | <i>p</i> -O₂NC₀H₄CO₂H                                                                                                                                               | (75)          | 74             |
| D-C <sub>6</sub> H <sub>5</sub> COCHCH <sub>2</sub> O <sub>2</sub> CCH <sub>3</sub><br>I<br>NHCOCH <sub>3</sub>                                                                                                                                                                                                                                                                                | 6% PAA, H <sub>2</sub> SO <sub>4</sub> , 10 h, 20°                                                                                   | Ŀ-HOCH₂CH(NH₂)CO₂H                                                                                                                                                  | (64)          | 74             |
| $ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                  | МСРВА, CH2Cl2, 12 h, 25°                                                                                                             | O + O + O + O + O + O + O + O + O + O +                                                                                                                             |               | 634            |
| C6H3COC6H11                                                                                                                                                                                                                                                                                                                                                                                    | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>1 h, reflux<br><i>r</i> -BuO <sub>2</sub> H, KOH, 80° | + $C_{6}H_{5}$ + $O_{H}$<br>+ $HOCH_{2}$ + $O_{H}$<br>() minor<br>$C_{6}H_{5}O_{2}CC_{6}H_{11}$ + $C_{6}H_{5}CO_{2}C_{6}H_{11}$<br>(25) (75)<br>$C_{6}H_{5}CO_{2}H$ | (5)<br>(90)*  | 15, 836<br>532 |
| COCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                              | 40% PAA, AcOH, 120 h, 25°                                                                                                            | O <sub>2</sub> CCH <sub>3</sub>                                                                                                                                     | (—)           | 837            |
| COCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                              | MCPBA, K <sub>2</sub> CO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>41 h, 40°                                               | O <sub>2</sub> CCH <sub>3</sub><br>OCH <sub>3</sub>                                                                                                                 | (47)<br>(52)* | 764            |
| COCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                              | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 22 h, 25°                                                                                   | O2CCH3<br>OCH3                                                                                                                                                      | (60)          | 764            |
| CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> | 3% H <sub>2</sub> O <sub>2</sub> , NaOH, 2 h, 25°                                                                                    | CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>2</sub> CH<br>CH <sub>3</sub> O                    | (50)<br>(33)* | 838            |
| CH2COC <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                             | 30% H <sub>2</sub> O <sub>2</sub> , C <sub>2</sub> H <sub>5</sub> OH, 1–14 d                                                         | $C_6H_5CO_2H + \underbrace{\bigvee_{n=CH_2}^{N-CHO}}_{(14)} (94)$                                                                                                   |               | 73             |



TABLE I. REACTIONS OF STRAIGHT-CHAIN KETONES (Continued)

| ABLEI   | REACTIONS OF | STRAIGHT-CHAIN | KETONES ( | Continued | ۱ |
|---------|--------------|----------------|-----------|-----------|---|
| ADLL I. | REACTIONS OF | STRAIGHT-CHAIN | TELONES ! | Commune   | , |

| Reactant                                                                                                                | Conditions                                                                                                                           | Product(s) and Yield(s) (%)                                                             |               | Refs.   |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------|---------|
| CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub><br>COCH <sub>3</sub>                                                      | PAA                                                                                                                                  | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub><br>O <sub>2</sub> CCH <sub>3</sub>        | (75)          | 661     |
| CO2CH3<br>COCH3                                                                                                         | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 6 h, heat                                                                                   | CO <sub>2</sub> CH <sub>3</sub><br>O <sub>2</sub> CCH <sub>3</sub>                      | (64)          | 64      |
| CH3CO CO2CH3                                                                                                            | TFPAA (80%), Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 12 h, reflux                                    | CH <sub>3</sub> CO <sub>2</sub> CO <sub>2</sub> CH <sub>3</sub>                         | (76)          | 840     |
| 1-C4H9 COCH3                                                                                                            | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>1.5 h, reflux                                         | 1-C4H9 02CCH3                                                                           | (—)           | 841     |
| COCH3                                                                                                                   | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 5 d, $25^{\circ}$                                        | O <sub>2</sub> CCH <sub>3</sub>                                                         | (—)           | 841     |
| i-C <sub>3</sub> H <sub>7</sub> H CH <sub>2</sub> OH<br>COCH <sub>3</sub>                                               | H <sub>2</sub> O <sub>2</sub> , AcOH-THF                                                                                             | i-C <sub>3</sub> H <sub>7</sub> H CH <sub>2</sub> OH<br>O <sub>2</sub> CCH <sub>3</sub> | (>82)         | 717     |
| TBDMSO<br>H H<br>COCH <sub>3</sub>                                                                                      | 80-90% MCPBA, CHCl <sub>3</sub> ,<br>4 d, 25°                                                                                        | TBDMSO H H<br>O2CCH3                                                                    | (84)          | 55, 842 |
| TBDMSO H H<br>O NH                                                                                                      | 80–90% MCPBA, CHCl <sub>3</sub> ,<br>4 d, 25°                                                                                        | TBDMSO H H<br>                                                                          | (96)          | 55      |
| n-C <sub>6</sub> H <sub>13</sub> COC <sub>6</sub> H <sub>13</sub> -n                                                    | [(CH <sub>3</sub> ) <sub>3</sub> Si] <sub>2</sub> O <sub>2</sub> , SnCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>5 h, 25° | $n-C_6H_{13}CO_2C_6H_{13}-n$                                                            | (93)          | 220     |
| <i>t</i> -C₄H <sub>9</sub> CO C <sub>3</sub> H <sub>7</sub> - <i>n</i><br>H<br>C <sub>3</sub> H <sub>7</sub> - <i>n</i> | TFPAA (90%), Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 1 h, reflux                                     |                                                                                         | (0)           | 86      |
| COCH3                                                                                                                   | 36-40% PAA (BaCO <sub>3</sub> washed),<br>AcOH, 20 h, 25°                                                                            | O2CCH3                                                                                  | (84)          | 126     |
| <i>p</i> -HO₂CC6H₄COC6H5                                                                                                | 30% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , AcOH,<br>6.5 h, 40°                                             | $p-HO_2CC_bH_4CO_2H + C_bH_5OH$<br>(87) (84)                                            |               | 843     |
| $D \xrightarrow{COC_6H_5} D \xrightarrow{COC_6H_5}$                                                                     | 40% PAA, BF <sub>3</sub> etherate,<br>30 h, 45°                                                                                      | $D \xrightarrow{O_2CC_6H_5} C_6H_5$ (R)                                                 | (—)           | 844     |
| C <sub>6</sub> H <sub>5</sub> COCH <sub>2</sub> C <sub>6</sub> H <sub>4</sub> Cl-p                                      | 1-BuO <sub>2</sub> H, KOH, 80°                                                                                                       | $C_{6}H_{3}CO_{2}H + p-CIC_{6}H_{4}CO_{2}H$ I II                                        | (12)<br>(80)* | 532     |
|                                                                                                                         | $H_2O_2$ (0.1 M), NaOH,<br>C <sub>2</sub> H <sub>5</sub> OH-H <sub>2</sub> O, 4 h, 55°                                               | I:II = 50:50<br>I + II                                                                  | (85)          | 777     |
| p-CIC₀H₄COCH₂C₀H₅<br>COC₀H₄OH-o                                                                                         | $H_2O_2$ (0.1 M), NaOH,<br>C <sub>2</sub> H <sub>5</sub> OH-H <sub>2</sub> O, 4 h, 55°                                               | I + II<br>02CC4H4OH-0 CO-C4H4OH-0                                                       | (87)          | 777     |
| N CO <sub>2</sub> H                                                                                                     |                                                                                                                                      | $\int_{N} \int_{CO_2H} + \int_{N} \int_{CO_2H}$                                         | (—)           | 99      |

| Reactant                                                                             | Conditions                                                                                     | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | Refs.    |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|
| p-C <sub>6</sub> H <sub>5</sub> C <sub>6</sub> H <sub>4</sub> COCH <sub>3</sub>      | NaBO <sub>3</sub> , TFAA-AcOH,                                                                 | p-C <sub>6</sub> H <sub>5</sub> C <sub>6</sub> H <sub>4</sub> O <sub>2</sub> CCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (84)          | 114      |
| C <sub>6</sub> H <sub>5</sub> COCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>        | TFPAA (90%), Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 1 h, heat | $C_6H_5CO_2CH_2C_6H_5 + C_6H_5O_2CCH_2C_6H_5$ III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (90)          | 15       |
|                                                                                      |                                                                                                | I:II = 57:43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (07)          |          |
|                                                                                      | MCPBA (2 eq), solid state,<br>24 h. 25°                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (97)          | 532, 740 |
|                                                                                      | <i>t</i> -BuO <sub>2</sub> H, KOH, 80°                                                         | C <sub>6</sub> H <sub>3</sub> CO <sub>2</sub> H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (12)          | 532      |
|                                                                                      | H <sub>2</sub> O <sub>2</sub> (0.22 M), NaOH,                                                  | C <sub>6</sub> H <sub>5</sub> CO <sub>2</sub> H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (76)          | 777      |
| o-CH₃C6H₄COC6H₅                                                                      | 40% PAA, H <sub>2</sub> SO <sub>4</sub> , AcOH,                                                | $\rho - CH_3C_6H_4CO_2CC_6H_5 + \rho - CH_3C_6H_4O_2CC_6H_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | 125      |
|                                                                                      | 4-6 d, 25°<br>MCPBA (2 eq), solid state,<br>4 d, 25°                                           | 1 (38) $1 (12)1:II = 50:50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (39)          | 740      |
| p-CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> COC <sub>6</sub> H <sub>5</sub>      | MCPBA (2 eq), solid state,                                                                     | p-CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> O <sub>2</sub> CC <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (50)          | 740      |
| C <sub>6</sub> H <sub>3</sub> COCHOHC <sub>6</sub> H <sub>5</sub>                    | 24  H, 25<br>70% MCPBA, CH <sub>2</sub> Cl <sub>2</sub> ,<br>2-3 h, 0°                         | C6H3CHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (90)          | 71       |
|                                                                                      | <i>t</i> -BuO <sub>2</sub> H, KOH, 80°                                                         | C <sub>6</sub> H <sub>5</sub> CO <sub>2</sub> H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (16)          | 532      |
| ₽-CH1OC4H4COC4H4                                                                     | 40% PAA, AcOH, 4-6 d, 25°                                                                      | e-CH3OC4H4O3CC4H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +(80)*        | 125      |
| p-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> COC <sub>6</sub> H <sub>5</sub>     | 40% PAA, AcOH, H <sub>2</sub> SO <sub>4</sub><br>several d, 25°                                | <i>p</i> -CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> O <sub>2</sub> CC <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ()            | 14       |
| p-HOC <sub>6</sub> H <sub>4</sub> COC <sub>6</sub> H <sub>4</sub> CH <sub>3</sub> -p | 30% H <sub>2</sub> O <sub>2</sub> , NaOH                                                       | HO <sub>2</sub> CC <sub>6</sub> H <sub>4</sub> CH <sub>3</sub> -p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (8)<br>+(90)* | 772      |
| COCH3                                                                                | PAA, AcOH, Amberlyst-15-                                                                       | O <sub>2</sub> CCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (47)          | 845      |
|                                                                                      | MCPBA, CHCl <sub>3</sub> , 1 h, 25°                                                            | $ \begin{array}{c} \begin{array}{c} 0 \\ N \\ N \\ 0 \end{array} \\ 0 \end{array} \\ 0 \end{array} \\ + \begin{array}{c} 0 \\ N \\ 0 \end{array} \\ 0 \end{array} \\ + \begin{array}{c} 0 \\ N \\ N \end{array} \\ 0 \end{array} \\ + \begin{array}{c} 0 \\ N \\ N \end{array} \\ N \end{array} \\ + \begin{array}{c} 0 \\ N \\ N \end{array} \\ N \end{array} \\ + \begin{array}{c} 0 \\ N \\ N \end{array} \\ N \end{array} \\ + \begin{array}{c} 0 \\ N \\ N \end{array} \\ N \end{array} \\ + \begin{array}{c} 0 \\ N \\ N \end{array} \\ N \end{array} \\ + \begin{array}{c} 0 \\ N \\ N \end{array} \\ N \end{array} \\ + \begin{array}{c} 0 \\ N \\ N \end{array} \\ N \end{array} \\ + \begin{array}{c} 0 \\ N \\ N \end{array} \\ N \end{array} \\ + \begin{array}{c} 0 \\ N \\ N \end{array} \\ N \end{array} \\ + \begin{array}{c} 0 \\ N \\ N \end{array} \\ + \begin{array}{c} 0 \\ N \\ N \end{array} \\ + \begin{array}{c} 0 \\ N \\ N \end{array} \\ + \begin{array}{c} 0 \\ N \\ N \end{array} \\ + \begin{array}{c} 0 \\ N \\ N \end{array} \\ + \begin{array}{c} 0 \\ N \\ N \end{array} \\ + \begin{array}{c} 0 \\ N \\ N \end{array} \\ + \begin{array}{c} 0 \\ N \\ N \end{array} \\ + \begin{array}{c} 0 \\ N \\ N \end{array} \\ + \begin{array}{c} 0 \\ N \\ N \\ N \end{array} \\ + \begin{array}{c} 0 \\ N \\ N \\ N \end{array} \\ + \begin{array}{c} 0 \\ N \\ N \\ N \\ N \end{array} \\ + \begin{array}{c} 0 \\ N \\$ |               | 100      |
| $CH_{3O}$ COCH <sub>3</sub><br>$COCH_3$<br>$CICH_2CO$ CO CU                          | MCPBA or TFPAA                                                                                 | 0- 0-<br>CICH2CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0)           | 571      |
| N<br>CH <sub>3</sub>                                                                 | MCPBA, Na <sub>2</sub> HPO <sub>4</sub> , CHCl <sub>3</sub> ,<br>6 h, 25°                      | CH <sub>3</sub><br>CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (59)          | 120      |
|                                                                                      | 1 400 NoOH 2 h have                                                                            | CH30 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (65)          | 676      |

| Reactant                                                                                              | Conditions                                                                                               | Product(s) and Yield(s) (%)                                                                                |                        | Refs.    |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------|----------|
|                                                                                                       | 30% H <sub>2</sub> O <sub>2</sub> , 4% NaOH,<br>2.25 h, 5°                                               | CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O                                                | (33)                   | 676, 832 |
| HO COCH3                                                                                              | 1. TFPAA (90%), CH <sub>2</sub> Cl <sub>2</sub> ,<br>24 h, 25°<br>2. NaOH, CH <sub>3</sub> OH, 17 h, 50° | HO<br>HO<br>68:32 mixture                                                                                  | (60)                   | 54       |
| $\bigcup_{\substack{V \in \mathcal{N} \\ V \in \mathcal{OCH}_3}} CN = COC_2 H_5$                      | PBA, CHCl <sub>3</sub> , 120 h, 25°                                                                      | $\bigcup_{\substack{N \\ O_2CCH_3}} OC_2H_5 + \bigcup_{\substack{N \\ O_1 \\ O_2CCH_3}} OC_2H_5 + OC_2H_5$ | 45<br>+(21)*           | 846      |
| COCH <sub>3</sub><br>CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CO <sub>2</sub> H | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, 2.25 h, 5°                                                     |                                                                                                            | (74)                   | 676, 832 |
|                                                                                                       | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 2 h, 25°                                                        | O = O = O = O = O = O = O = O = O = O =                                                                    |                        | 635      |
| CH2COC,H5                                                                                             | TFPAA (100%), Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 3 h, 0°            | (35) (22)                                                                                                  | cis (94)<br>trans (98) | 112      |
| C <sub>6</sub> H <sub>5</sub><br>CH <sub>3</sub> O<br>OCH <sub>3</sub>                                | 30% H <sub>2</sub> O <sub>2</sub> , AcOH, 6–7 h                                                          | $CH_{3}CO_{C_{6}H_{5}} + C_{6}H_{5} + CO_{2}H_{5}$                                                         | (95)                   | 111      |
| COCH <sub>3</sub><br>OCH <sub>3</sub>                                                                 | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 84 h, 40°                                                       | O2CCH3<br>OCH3                                                                                             | (67)                   | 764      |
| CH <sub>3</sub> CO                                                                                    | TFPAA (90%), Na2HPO4<br>CH2Cl2, 2 h, 25°                                                                 | CH <sub>3</sub> O <sub>2</sub> C<br>CH <sub>3</sub> CO <sub>2</sub> ···                                    | (55)                   | 67       |
| ÓCH₃<br>N−CH2COC6H4OCH3-р                                                                             | 30% H <sub>2</sub> O <sub>2</sub> , C <sub>2</sub> H <sub>5</sub> OH, 1–14 d                             | $OCH_3$<br>$p-CH_3OC_6H_4CO_2H + $                                                                         |                        | 73       |

TABLE I. REACTIONS OF STRAIGHT-CHAIN KETONES (Continued)

|                     | Reactant                                                                                                             | Conditions                                                                                                                                     | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | Refs |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|--|
|                     | COCH <sub>3</sub><br>CH <sub>3</sub> O <sub>2</sub> C                                                                | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>30 min, heat                                                    | O <sub>2</sub> CCH <sub>3</sub><br>CH <sub>3</sub> O <sub>2</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (66) | 847  |  |
|                     | CH3CO.                                                                                                               | -                                                                                                                                              | CH <sub>3</sub> CO <sub>2</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (—)  | 848  |  |
| 866                 | COCH3                                                                                                                | TFPAA (80%), H <sub>2</sub> SO <sub>4</sub> , AcOH,<br>24 h, 25°                                                                               | OH + CO <sub>2</sub> H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 93   |  |
|                     | COCH <sub>3</sub>                                                                                                    | 30% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , <i>t</i> -BuOH,<br>24 h, 25°                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (73) | 81   |  |
|                     | $HO_2C(CH_2)_6 + O$                                                                                                  | <ol> <li>TFPAA, Na<sub>2</sub>HPO<sub>4</sub>, CH<sub>2</sub>Cl<sub>2</sub>,</li> <li>1.5 h, heat</li> <li>Hydrolysis and oxidation</li> </ol> | $HO_2C(CH_2)_4CO_2H + HO_2C(CH_2)_5CO_2H + HO_2C(CH_2)_6CO_2H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (—)  | 849  |  |
|                     |                                                                                                                      | 1. TFPAA (90%), Na <sub>2</sub> HPO <sub>4</sub> .<br>CH <sub>2</sub> Cl <sub>2</sub> , 2 h, 25°<br>2. 2 h, reflux                             | O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = N + O = | (31) | 92   |  |
|                     | OH COCH <sub>3</sub>                                                                                                 | МСРВА                                                                                                                                          | $I:II = 53:47$ $\bigcup_{i=1}^{n} C_{4}H_{9}-n$ OH COCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (—)  | 110  |  |
|                     | COC <sub>5</sub> H <sub>11</sub> - <i>n</i>                                                                          | MCPBA, TsOH, CHCl <sub>3</sub> ,<br>92 h, 25°                                                                                                  | 0 <sub>2</sub> CC <sub>5</sub> H <sub>11</sub> -n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (90) | 850  |  |
| 399 C <sub>15</sub> | <i>p</i> -HO <sub>2</sub> CC <sub>6</sub> H <sub>4</sub> COC <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> H- <i>p</i> | H <sub>2</sub> SO <sub>5</sub> , H <sub>2</sub> SO <sub>4</sub>                                                                                | <i>p</i> -HO₂CC₀H₄CO₂H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (50) | 851  |  |
|                     | CCH <sub>3</sub>                                                                                                     | 15% PAA, H <sub>2</sub> SO <sub>4</sub> , AcOH, 4 h                                                                                            | OCH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (—)  | 126  |  |
|                     | p-CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> COC <sub>6</sub> H <sub>4</sub> CH <sub>3</sub> -p                   | 30% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , AcOH,<br>11.5 h, 25°                                                      | $p-CH_{3}C_{6}H_{4}CO_{2}H + p-CH_{3}C_{6}H_{4}OH$<br>(95) (95)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 852  |  |
|                     | COC <sub>6</sub> H <sub>5</sub>                                                                                      | 40% PAA                                                                                                                                        | Up O2CC6H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (76) | 853  |  |
|                     | (S)-C <sub>6</sub> H <sub>5</sub> CH(CH <sub>3</sub> )COC <sub>6</sub> H <sub>5</sub>                                | MCPBA, CICH <sub>2</sub> CH <sub>2</sub> CI,<br>72 b. 25°                                                                                      | (S)-C <sub>6</sub> H <sub>5</sub> CH(CH <sub>3</sub> )O <sub>2</sub> CC <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (—)  | 175  |  |
|                     | C <sub>6</sub> H <sub>5</sub> COCH <sub>3</sub>                                                                      | 15% PAA, H <sub>2</sub> SO <sub>4</sub> , AcOH,<br>80 h, 25°                                                                                   | C <sub>6</sub> H <sub>5</sub> O <sub>2</sub> CCH <sub>3</sub><br>OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (50) | 854  |  |
|                     |                                                                                                                      |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |      |  |

| Reactant                                                                                                                                                                 | Conditions                                                                                                   | Product(s) and Yield(s) (%)                                                                                   |                     | Refs     | s. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------|----------|----|
| C <sub>6</sub> H <sub>5</sub> CH(OCH <sub>3</sub> )COC <sub>6</sub> H <sub>5</sub><br>C <sub>6</sub> H <sub>5</sub> C(CH <sub>3</sub> )OHCOC <sub>6</sub> H <sub>5</sub> | 70% MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 0°<br>70% MCPBA, CH <sub>2</sub> Cl <sub>2</sub> ,<br>2–3 d, 0° | $C_6H_5CHO + CH_3O_2CC_6H_5$<br>No reaction                                                                   | (—)<br>(0)          | 71<br>71 |    |
| CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>2</sub> CO                                                                                                             | 1. 6% H <sub>2</sub> O <sub>2</sub> , NaOH, 15 min,<br>0-5°<br>2. 2 h. 25°                                   | CH <sub>3</sub> O<br>CH <sub>2</sub> CO                                                                       | (56)                | 855      |    |
| CH <sub>3</sub> O                                                                                                                                                        |                                                                                                              | CH <sub>3</sub> O                                                                                             |                     |          |    |
| -CH3CONHC6H4COCHCH2O2CCH3<br>(L) NHCOCH3                                                                                                                                 | 6% PAA, H <sub>2</sub> SO <sub>4</sub> , 10 h, 20°                                                           | D-HOCH <sub>2</sub> CH(NH <sub>2</sub> )CO <sub>2</sub> H<br>(D-Serine)                                       | (46)                | 74       |    |
| COC <sub>6</sub> H <sub>5</sub>                                                                                                                                          | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 8 d, 25°                                                            | H $H$ $H$ $H$ $H$ $H$ $H$ $H$ $H$ $H$                                                                         | I <sub>5</sub> (81) | 836      |    |
| CH3CO                                                                                                                                                                    | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 24 h, reflux                                                        | I II<br>I:II = 90:10                                                                                          | (77)                | 856      |    |
| C <sub>6</sub> H <sub>5</sub><br>COCH <sub>3</sub>                                                                                                                       | MCPBA, CH2Cl2, 2 h, 25°                                                                                      | $O + C_2H_5 + O + C_6H_5 + C_6H_5$                                                                            |                     | 635      |    |
| OCH <sub>3</sub><br>COCH <sub>3</sub>                                                                                                                                    | 80–90% MCPBA, TsOH,<br>CH <sub>2</sub> Cl <sub>2</sub> , 192 h, 5°                                           | OCH <sub>3</sub><br>O <sub>2</sub> CCH <sub>3</sub>                                                           | (49)                | 857      |    |
|                                                                                                                                                                          | DNPBA, Na <sub>2</sub> CO <sub>3</sub> , TBP,<br>CICH <sub>2</sub> CH <sub>2</sub> Cl, 54°                   |                                                                                                               | (71)                | 66       |    |
| C(CH <sub>3</sub> ) <sub>2</sub> COC <sub>6</sub> H <sub>5</sub>                                                                                                         | 30% H <sub>2</sub> O <sub>2</sub> , C <sub>2</sub> H <sub>5</sub> OH, 1-14 d                                 | C <sub>6</sub> H <sub>5</sub> CO <sub>2</sub> H                                                               | (96)                | 73       |    |
| C <sub>6</sub> H <sub>3</sub> COCH(CH <sub>3</sub> )C <sub>6</sub> H <sub>13</sub> - <i>n</i>                                                                            | <i>ı</i> -BuO₂H, KOH                                                                                         | $C_{6}H_{5}CO_{2}H + CH_{3}COC_{6}H_{13}-n$ (18) (11) $+ n-C_{6}H_{13}CO_{2}H + n-C_{5}H_{11}CO_{2}H$ (2) (2) | +(57)*              | 124      |    |
| i-C4H9 C2H5                                                                                                                                                              | <i>t</i> -BuO <sub>2</sub> H, KOH                                                                            | $C_6H_5CO_2H + i-C_4H_9$                                                                                      |                     | 124      |    |
| (3)                                                                                                                                                                      |                                                                                                              | (23) (5)<br>(23) (17)<br>$O_2CC_6H_5$                                                                         | +/47)*              |          |    |
| $COC_6H_5$<br>$i-C_4H_9$<br>(S)                                                                                                                                          | r-BuO₂H, KOH                                                                                                 | (2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)                                                          | +(47)*              | 1        | 24 |

TABLE I. REACTIONS OF STRAIGHT-CHAIN KETONES (Continued)



| Reactant                                                                                                                                                    | Conditions                                                                               | Product(s) and Yield(s) (%)                                                                                                       |      | Refs. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------|-------|
| CH <sub>3</sub> CO COCH <sub>3</sub>                                                                                                                        | PAA, $H_2SO_4$ , AcOH, 3 h, $35-40^\circ$                                                | CH <sub>3</sub> CO <sub>2</sub>                                                                                                   | (23) | 126   |
| CH <sub>3</sub> CO                                                                                                                                          | 36–40% PAA, H <sub>2</sub> SO <sub>4</sub> , AcOH,<br>6 h, 35°                           | CH <sub>3</sub> CO <sub>2</sub>                                                                                                   | (60) | 126   |
| CH <sub>3</sub> CO                                                                                                                                          | MCPBA, CHCl <sub>3</sub> , 4 d, 25°                                                      | CH <sub>3</sub> CO <sub>2</sub><br>CH <sub>3</sub> CO <sub>2</sub><br>O <sub>2</sub> CCH <sub>3</sub>                             | (88) | 862   |
| C <sub>6</sub> H <sub>5</sub> CO                                                                                                                            | 40% PAA                                                                                  | C6H5CO2                                                                                                                           | (85) | 853   |
| <i>p</i> -( <i>i</i> -C <sub>3</sub> H <sub>7</sub> O)C <sub>6</sub> H <sub>4</sub> COC <sub>6</sub> H <sub>5</sub>                                         | 11% PAA, H <sub>2</sub> SO <sub>4</sub> , AcOH,<br>96 h, 25°                             | <i>p</i> -( <i>i</i> -C <sub>3</sub> H <sub>7</sub> O)C <sub>6</sub> H <sub>4</sub> O <sub>2</sub> CC <sub>6</sub> H <sub>5</sub> | (92) | 798   |
| $COCH_3$ $CH_3O$ $CH_3CO$ $CH_3O$ $CH_3O$                                                                                                                   | 1. 6% H <sub>2</sub> O <sub>2</sub> , NaOH, 0–10°,<br>15 min<br>2. 2 h, 25°              | $CH_{3O} \rightarrow OH \\ CH_{3CO} \rightarrow O \\ CH_{3O} \rightarrow O$                                                       | (33) | 855   |
| COC <sub>6</sub> H <sub>5</sub>                                                                                                                             | TFPAA (88%), Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 1 h | $ \begin{array}{c}                                     $                                                                          | (90) | 15    |
| COC <sub>6</sub> H <sub>5</sub><br>H                                                                                                                        | MCPBA, CH2Cl2, 8 d, 25°                                                                  | H = 92:8                                                                                                                          | (85) | 836   |
| O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O                                                                 | 9% PAA, AcOH, 5.5 h, 30-32°                                                              |                                                                                                                                   | (82) | 863   |
| CH <sub>3</sub> CO, H<br>H O <sub>2</sub> CCH <sub>3</sub><br>CH <sub>3</sub> CO                                                                            | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 13 d, reflux                                    | $\begin{array}{c} CH_3CO_2 & H \\ & & & \\ & & & \\ & & & \\ CH_3CO_2 \end{array}  O_2CCH_3 \\ & & \\ CH_3CO_2 \end{array}$       | (54) | 864   |
| n-C <sub>4</sub> H <sub>9</sub> O                                                                                                                           | PAA, NaOAc, AcOH, 12 h,<br>40-42°                                                        | n-C <sub>4</sub> H <sub>9</sub> O<br>OC <sub>4</sub> H <sub>9</sub> -n                                                            | (50) | 788   |
| HO <sub>2</sub> C(CH <sub>2</sub> ) <sub>4</sub> CO(CH <sub>2</sub> ) <sub>4</sub> CHCO <sub>2</sub> H<br>CH <sub>3</sub> CO(CH <sub>2</sub> ) <sub>2</sub> | 1. TFPAA<br>2. NaOH, CH3OH                                                               | $HO_2C(CH_2)_4CO_2H + HO_2C(CH_2)_4OH$                                                                                            | (—)  | 849   |
| CH <sub>3</sub> CO <sup>H</sup>                                                                                                                             | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 25°                                             | CH <sub>3</sub> CO <sub>2</sub> <sup>H</sup>                                                                                      | (95) | 105   |

|                                                             |                                 | TABLE I. REACTIONS OF STRAIGHT-CH                                                                               | AIN RETONES (Continueu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |     | -  |
|-------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----|----|
|                                                             | Reactant                        | Conditions                                                                                                      | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | Ref | s. |
| CH <sub>3</sub> CO <sup>H</sup>                             | OC4H9-1                         | 1. TFPAA (90%), Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 1 h, 0°<br>2. 30 h, 25° | CH <sub>3</sub> CO <sub>2</sub> <sup>H</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (57)                                                  | 59  |    |
| C <sub>17</sub><br>CH <sub>3</sub> CO<br>HO                 |                                 | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, 12 h, 0°                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (66)                                                  | 865 |    |
| CH3CO HO                                                    |                                 | 30% H <sub>2</sub> O <sub>2</sub> , 5% NaOH,<br>2.25 h, 0°                                                      | CH <sub>3</sub> CO HOH CO <sub>2</sub> H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ()                                                    | 866 |    |
| CH3CO                                                       | Сосн3                           | MCPBA, TFAA, CHCl <sub>3</sub> ,<br>3 d, 25°                                                                    | CH <sub>3</sub> CO <sub>2</sub> O <sub>2</sub> CCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (62)                                                  | 867 |    |
| $\bigcirc$                                                  | _COC₀H₅                         | 40% PAA                                                                                                         | O <sub>2</sub> CC <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (85)                                                  | 853 |    |
| CH <sub>3</sub> CO <sub>2</sub> CH <sub>2</sub>             | COC <sub>6</sub> H <sub>3</sub> | 8% PAA, H <sub>3</sub> PO <sub>4</sub> , AcOH,<br>72 h, 25°                                                     | HOCH <sub>2</sub> OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (42)                                                  | 798 |    |
|                                                             | CH3<br>12C6H5                   | 36% H <sub>2</sub> O <sub>2</sub> , HCO <sub>2</sub> H, 72 h, 0°                                                | $\bigcup_{0}^{O_2CCH_3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (89)                                                  | 868 |    |
| C <sub>2</sub> H <sub>5</sub> C <sub>6</sub> H <sub>5</sub> |                                 | <i>t</i> -BuO₂H, KOH, 50°                                                                                       | $C_2H_5$ $C_6H_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (13)                                                  | 124 |    |
|                                                             |                                 |                                                                                                                 | + 0 <sub>2</sub> CC <sub>6</sub> H <sub>5</sub><br>C <sub>2</sub> H <sub>5</sub> C <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (9)                                                   |     |    |
| 407                                                         |                                 |                                                                                                                 | $(R) + C_6H_5CO_2H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (65)<br>(20)*                                         |     |    |
| L'                                                          |                                 | 40% PAA                                                                                                         | + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (80–85)                                               | 853 |    |
| $\sim$                                                      | COC <sub>6</sub> H <sub>5</sub> | MCPBA, CH2Cl2, 8 d, 25°                                                                                         | $O_2CC_6H_5 + O_2CC_6H_5 + O_2$ | CO <sub>2</sub> C <sub>6</sub> H <sub>5</sub><br>(82) | 836 |    |



| Reactant                                                                                                                                                  | Conditions                                                                         | Product(s) and Yield(s) (%)                                                                                                                               |                      | Refs.    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|
| C <sub>6</sub> H <sub>5</sub> COCHCH <sub>2</sub> O <sub>2</sub> CNH <sub>2</sub><br> <br>NHCO <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | 6% PAA, H <sub>2</sub> SO <sub>4</sub> , 10 h, 20°                                 | C <sub>6</sub> H <sub>5</sub> CO <sub>2</sub> H                                                                                                           | (61)                 | 74       |
| COC6H5<br>H                                                                                                                                               | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 25°                                       | $ \begin{array}{c}                                     $                                                                                                  | ,H <sub>5</sub> (—)  | 444      |
| CO <sub>2</sub> CH <sub>3</sub><br>CH <sub>2</sub> CH(CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> )COCH <sub>3</sub>                                    | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 6 h, heat                                 | CO <sub>2</sub> CH <sub>3</sub><br>CH <sub>2</sub> CH(CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> )O <sub>2</sub> CCH <sub>3</sub>                      | (59)                 | 64       |
| O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O                                                               | 9% PAA, AcOH, 5.5 h, 30-32°                                                        | O O <sub>2</sub> CCH <sub>3</sub>                                                                                                                         | (65)                 | 863      |
| COCH <sub>3</sub><br>CO <sub>2</sub> H<br>CO <sub>2</sub> H<br>CO <sub>2</sub> H<br>CO <sub>2</sub> H                                                     | TFPAA, №2HPO4                                                                      | O <sub>2</sub> CCH <sub>3</sub><br>CO <sub>2</sub> H<br>O (CH <sub>2</sub> ) <sub>6</sub> CO <sub>2</sub> CH <sub>3</sub>                                 | (95)                 | 873      |
| COC <sub>5</sub> H <sub>11</sub> - <i>n</i><br>CO(CH <sub>2</sub> ) <sub>7</sub> CO <sub>2</sub> H                                                        | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 25° | CO <sub>2</sub> C <sub>5</sub> H <sub>11</sub> - <i>n</i><br>CO <sub>2</sub> (CH <sub>2</sub> ) <sub>7</sub> CO <sub>2</sub> H                            | (87)                 | 874      |
| Br COC <sub>6</sub> H <sub>5</sub>                                                                                                                        | 36–40% PAA, H <sub>2</sub> SO <sub>4</sub> ,<br>AcOH, 52 h, 40–42°                 | Br<br>R                                                                                                                                                   |                      | 875      |
| (a) $R = Br$<br>(b) $R = H$<br>$COC_6H_5$                                                                                                                 | 36–40% PAA, AcOH, 8 h, 35°                                                         | (a) $R = Br$<br>(b) $R = H$<br>$O_2CC_6H_5$                                                                                                               | (24)<br>(44)<br>(61) | 127, 875 |
| HO R<br>(a) $R = p$ -CIC <sub>6</sub> H <sub>4</sub><br>(b) $R = C_6H_5$                                                                                  | 30% H <sub>2</sub> O <sub>2</sub> , AcOH, H <sub>2</sub> SO <sub>4</sub> , 25°     | o-[o-HOC <sub>6</sub> H <sub>4</sub> ]C <sub>6</sub> H <sub>4</sub> O <sub>2</sub> CR<br>(a) $R = p$ -ClC <sub>6</sub> H <sub>4</sub><br>(b) $R = C_6H_5$ | (40)<br>(27–39)      | 723      |
| CH <sub>3</sub> CO<br>C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> O<br>CH <sub>3</sub> O                                                                | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, 2.25 h, 5°                               | C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> O<br>CH <sub>3</sub> O                                                                                      | (76)                 | 832      |

TABLE I. REACTIONS OF STRAIGHT-CHAIN KETONES (Continued)



| Reactant                                                                                                               | Conditions                                                                               | Product(s) and Yield(s) (%)                                                                                                                     |               | Refs.   |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|
| C <sub>6</sub> H <sub>5</sub> (CH <sub>3</sub> ) <sub>2</sub> Si<br>C <sub>6</sub> H <sub>5</sub> COCH <sub>3</sub>    | MCPBA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>24 h, 25° | $C_6H_5(CH_3)_2Si$<br>$C_6H_5$ $O_2CCH_3$                                                                                                       | (95)          | 880, 88 |
| COC <sub>6</sub> H <sub>5</sub>                                                                                        | MCPBA, CH2Cl2, 3 h, 25°                                                                  | H<br>O2CCH3<br>O2CC6H5<br>H                                                                                                                     | (92)          | 444     |
| CH <sub>3</sub> O COCH <sub>3</sub>                                                                                    | 10% MPPA, ether, 30 d, $-3^{\circ}$                                                      | CH <sub>3</sub> O                                                                                                                               | (85)          | 747     |
| C <sub>6</sub> H <sub>5</sub> (CH <sub>3</sub> ) <sub>2</sub> Si<br>n-C <sub>6</sub> H <sub>13</sub> COCH <sub>3</sub> | MCPBA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub>                | C <sub>6</sub> H <sub>5</sub> (CH <sub>3</sub> ) <sub>2</sub> Si<br><i>n</i> -C <sub>6</sub> H <sub>13</sub><br>0 <sub>2</sub> CCH <sub>3</sub> | (42)          | 880     |
| (CH <sub>2</sub> ) <sub>7</sub> CO <sub>2</sub> CH <sub>3</sub>                                                        | MCPBA, NaHCO <sub>3</sub> , CHCl <sub>3</sub> ,<br>24 h, 25°                             | n-C <sub>6</sub> H <sub>13</sub> O (CH <sub>2</sub> ) <sub>7</sub> CO <sub>2</sub> CH <sub>3</sub>                                              | (25)          | 103     |
| CH <sub>3</sub> O                                                                                                      | TFPAA                                                                                    | CH <sub>3</sub> O' (CH <sub>2</sub> ) <sub>2</sub> OCH <sub>3</sub>                                                                             | (>55)         | 271     |
| (a) $R = p - CF_3C_6H_4$<br>(b) $R = p - CH_3C_6H_4$                                                                   | 30% H <sub>2</sub> O <sub>2</sub> , AcOH, H <sub>2</sub> SO <sub>4</sub> , 25°           | (a) $R = p-CF_3C_6H_4$ (-) (45)<br>(b) $R = p-CH_3C_6H_4$ (3.5) (65)                                                                            |               | 723     |
| (c) $R = p-CH_3OC_6H_4$<br>H<br>$COCH_3$<br>$COC_6H_5$                                                                 | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 20 h, heat                                      | (c) $R = p-CH_3OC_6H_4$ (31) $o-(o-HOC_6H_4)$<br>(3)                                                                                            | (23)<br>(46)* | 882     |
|                                                                                                                        | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 20 h, heat                                      | $\bigcup_{\substack{N \\ H \\ COC_6H_5}} O_2CCH_3$                                                                                              | (58)          | 882     |
| ajioo                                                                                                                  | 40% PAA                                                                                  | and the                                                                                                                                         | (-)           | 853     |
|                                                                                                                        |                                                                                          | + CO° CO                                                                                                                                        |               |         |





| Reactant                                                                                              | Conditions                                                                                                                                                | Product(s) and Yield(s) (%)                                                                                                                                                                 |               | Refs |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|
| CH <sub>3</sub> CO<br>BnO<br>CH <sub>2</sub> CHCO <sub>2</sub> C <sub>2</sub> H <sub>5</sub><br>NHCHO | MCPBA, CHCl <sub>3</sub> , 48 h, reflux                                                                                                                   | CH <sub>3</sub> CO <sub>2</sub><br>CH <sub>2</sub> CH <sub>2</sub> CHCO <sub>2</sub> C <sub>2</sub> H <sub>5</sub><br>NHCHO<br>BnO                                                          | (36)<br>(19)* | 883  |
| CH <sub>3</sub> CO <sub>2</sub> CH <sub>5</sub>                                                       | TFPAA (90%), Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 8 d, 25°                                                             | HO                                                                                                                                                                                          | (91)          | 730  |
| O <sub>2</sub> NO COCH <sub>3</sub><br>H H H<br>O <sub>2</sub> NO <sup>2</sup>                        | TFPAA (90%), K <sub>2</sub> HPO <sub>4</sub> ,<br>CHCl <sub>3</sub> , 12 h, heat                                                                          | O <sub>2</sub> NO<br>H<br>H<br>O <sub>2</sub> NO<br>O <sub>2</sub> CCH <sub>3</sub><br>O <sub>2</sub> CCH <sub>3</sub>                                                                      | (89)          | 889  |
| O2NO <sup>-</sup><br>H<br>H<br>O2NO <sup>-</sup><br>H<br>ONO <sub>2</sub>                             | PBA, CHCl <sub>3</sub> , 12 d, 25°                                                                                                                        | O <sub>2</sub> NO <sup></sup><br>H<br>H<br>O <sub>2</sub> NO <sup></sup><br>H<br>O <sub>2</sub> O <sub>2</sub> CCH <sub>3</sub><br>H<br>H<br>O <sub>2</sub> O <sub>2</sub> CCH <sub>3</sub> | (68)          | 890  |
| HO H H H H                                                                                            | 83% PBA, CHCl <sub>3</sub> , 157 h, 25°                                                                                                                   | HO<br>HO<br>HO                                                                                                                                                                              | (100)         | 891  |
| COCH3                                                                                                 | 50% H <sub>2</sub> O <sub>2</sub> , SeO <sub>2</sub> , <i>t</i> -C <sub>4</sub> H <sub>9</sub> OH,<br>7 h, heat                                           | COCH3<br>OH OH                                                                                                                                                                              | (69)          | 101  |
| COCH3                                                                                                 | K <sub>2</sub> SO <sub>5</sub> , H <sub>2</sub> SO <sub>4</sub> , AcOH, 3 d                                                                               | COCH3<br>O O H H                                                                                                                                                                            | (21)          | 507  |
| COCH3                                                                                                 | 1. 50% H <sub>2</sub> O <sub>2</sub> , SeO <sub>2</sub> , <i>t</i> -C <sub>4</sub> H <sub>9</sub> OH,<br>7 h, reflux<br>2. CH <sub>2</sub> N <sub>2</sub> | $ \begin{array}{c}                                     $                                                                                                                                    | (33)          | 101  |
| CH <sub>2</sub> CO <sub>2</sub> CH <sub>3</sub><br>HCOCH <sub>3</sub>                                 | MCPBA, TsOH, CH <sub>2</sub> Cl <sub>2</sub> ,<br>24 h, 25°                                                                                               | CH <sub>2</sub> CO <sub>2</sub> H<br>H<br>H                                                                                                                                                 | (68)          | 892  |



TABLE I. REACTIONS OF STRAIGHT-CHAIN KETONES (Continued)









| _               | Reactant                                                                               | Conditions                                                                                                             | Product(s) and Yield(s) (%)                                                                 | 4    | Refs. |
|-----------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------|-------|
| Czı             | CH <sub>3</sub> CO<br>BnO                                                              | PBA, CHCl <sub>3</sub> , 7 d, 25°                                                                                      | CH <sub>3</sub> CO <sub>2</sub><br>BnO                                                      | (75) | 118   |
|                 | C <sub>6</sub> H <sub>5</sub> CO <sub>2</sub> COCH <sub>3</sub>                        | MPPA, PBA, or MCPBA                                                                                                    |                                                                                             | (0)  | 906   |
|                 | CH <sub>3</sub> CO <sub>2</sub> · · · · · · · · · · · · · · · · · · ·                  | 1. TFPAA (90%), Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 1.5 h, 25°<br>2. 3.5 h, reflux | H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H | (79) | 907   |
|                 | $CH_{3}CO_{2} COCH_{3}$ $H$ $H$ $H$ $H$ $H$ $O_{2}CCH_{3}$                             | TFPAA (90%), K <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 1 h, heat                          | $CH_{3}CO_{2} O_{2}CCH_{3}$ $H$                         | (64) | 889   |
| C <sub>28</sub> | $CH_{3}(CH_{2})_{x}CO(CH_{2})_{y}CH_{2}$ $p-C_{6}H_{5}COC_{6}H_{4}CO_{2}$ $x + y = 11$ | TFPAA, CHCl <sub>3</sub>                                                                                               | Mixtures of chain insertion products                                                        | (—)  | 77    |
|                 |                                                                                        | MCPBA, 7 d, 0–5°                                                                                                       | CH <sub>3</sub> CO <sub>2</sub>                                                             | (77) | 908   |
| C <sub>29</sub> | CH <sub>3</sub> CO<br>C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> O                  | MCPBA, CHCl <sub>3</sub> , 10 d, 25°                                                                                   | CH <sub>3</sub> CO <sub>2</sub><br>C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> O          | (65) | 118   |
|                 | CH <sub>3</sub> CO <sub>2</sub> -COC <sub>3</sub> H <sub>7</sub> - <i>i</i>            | TFPAA (90%), Na2HPO4,<br>CH2Cl2, 1 h, 25°                                                                              | CH <sub>3</sub> CO <sub>2</sub> HO<br>HO<br>O <sub>2</sub> CCH <sub>3</sub>                 | (—)  | 104   |



|                 | Reactant                                                                                                         | Conditions                                          | Product(s) and Yield(s) (%)                                               |              | Refs. |
|-----------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------|--------------|-------|
|                 |                                                                                                                  | TFPAA, K2HPO4, CH2Cl2,<br>5 h, heat                 | CH <sub>3</sub> CO H                                                      | (100)        | 912   |
| C <sub>31</sub> | CH <sub>3</sub> O <sub>2</sub> C<br>CH <sub>3</sub> CO <sub>2</sub> C<br>H                                       | MCPBA, CHCl <sub>3</sub> , 6 h, heat                |                                                                           | (—)<br>(28)* | 108   |
|                 | CH <sub>3</sub> CO <sub>2</sub><br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>COC <sub>3</sub> H;<br>COC <sub>3</sub> H; | -i TFPAA, Na₂HPO4, CH₂Cl₂,<br>90 min, 25°           | H<br>H<br>H<br>CO <sub>2</sub> C <sub>3</sub> H <sub>7</sub> - <i>i</i>   | (100)        | 104   |
| C <sub>32</sub> | $CH_{3}(CH_{2})_{x}CO(CH_{2})_{y}CH_{2}$ $p-C_{6}H_{5}COC_{6}H_{4}CO_{2}$ $x + y = 15$                           | TFPAA, CHCl3                                        | Mixtures of chain insertion products                                      | (—)          | 77    |
|                 | CH <sub>3</sub> CO OH OTBDPS                                                                                     | H <sub>2</sub> O <sub>2</sub> , AcOH-THF            | CH <sub>3</sub> CO <sub>2</sub>                                           | (>87)        | 717   |
|                 | H<br>H<br>OCH <sub>3</sub>                                                                                       | MCPBA, NaHCO <sub>3</sub> , CHCl <sub>3</sub> , 25° | O <sub>2</sub> CCH <sub>3</sub>                                           | (34)         | 913   |
| C <sub>33</sub> | HO(CH <sub>2</sub> ) <sub>2</sub> $H$                                        | 85% MCPBA, CHCl <sub>3</sub> ,<br>46 h, 25°         | HO(CH <sub>2</sub> ) <sub>2</sub> $H$ | (>20)        | 914   |



|           | Reactant            | Conditions                                                                                                                                                                                                           | Product(s) and Yield(s) (%)                                                                                                                                 |          | Refs.                                   |
|-----------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------|
| C.        | Д                   | 30% H <sub>2</sub> O <sub>2</sub> , CF <sub>3</sub> CH <sub>2</sub> OH, 24 h, 25°                                                                                                                                    | oto                                                                                                                                                         | (98)     | 756, 43,<br>916, 917<br>182, 147        |
| c,        |                     | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 48 h, 20°                                                                                                                                                                   |                                                                                                                                                             |          | 221                                     |
|           |                     | <ol> <li>[(CH<sub>3</sub>)<sub>3</sub>Si]<sub>2</sub>O<sub>2</sub>, (CH<sub>3</sub>)<sub>3</sub>SiOS(O)<sub>2</sub>CF<sub>3</sub>,<br/>CH<sub>2</sub>Cl<sub>2</sub>, 30 h, −78° to −50°</li> <li>20 h, 0°</li> </ol> | I II<br>(63) (6)<br>II                                                                                                                                      | (42)     | 221                                     |
| C         | <u> </u>            | 30% $H_2O_2$ , polystyrene-SeO <sub>2</sub> H, 72 h                                                                                                                                                                  | Ĉ                                                                                                                                                           | (98)     | 43, 220,<br>221, 758<br>762             |
|           |                     | 20-28% PAA, acetone or                                                                                                                                                                                               |                                                                                                                                                             | (84)     | 754, 760                                |
|           |                     | CH <sub>3</sub> CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> , 8 h, 40°<br>TFPAA, TFAA, 40 min, 10–15°                                                                                                              | •                                                                                                                                                           | (88)     | 182, 574<br>742, 749<br>761, 763<br>918 |
|           |                     | H <sub>2</sub> O <sub>2</sub> , SeO <sub>2</sub>                                                                                                                                                                     | CO <sub>2</sub> H                                                                                                                                           | (23)     | 920                                     |
|           |                     | CAN, CH <sub>3</sub> CN–H <sub>2</sub> O, 4 h, 60°                                                                                                                                                                   | $HO_{2}C(CH_{2})_{4}ONO_{2}$ $I$ $+ HO_{2}C(CH_{2})_{2}CH(CH_{3})ONO_{2}$ $II$ $+ HO_{2}C(CH_{2})_{3}ONO_{2}$ $III$ $+ HO_{2}CCH_{2}CH(CH_{3})ONO_{2}$ $IV$ | (50)     | 686                                     |
| C.        |                     |                                                                                                                                                                                                                      | 1:11:111:1V = 24:16:34:26                                                                                                                                   |          |                                         |
| D<br>H    |                     | TFPAA (90%), Na2HPO4, 1.5 h, 0–25°                                                                                                                                                                                   |                                                                                                                                                             | (>75-80) | 143                                     |
| D,<br>H'  | O<br>H<br>D         | MCPBA, CHCl <sub>3</sub> , 12 h, 25°                                                                                                                                                                                 | H D H                                                                                                                                                       | (52)     | 921,922                                 |
| $\langle$ | ↓<br>N <sub>2</sub> | 99% MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 25°                                                                                                                                                                     |                                                                                                                                                             | (99)     | 218                                     |
| (         |                     | 30% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> O, 5 d, 25-30°                                                                                                                                                    | HO <sub>2</sub> C(CH <sub>2</sub> ) <sub>3</sub> CO <sub>2</sub> H                                                                                          | (50)     | 203                                     |
|           |                     | 85% MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>72 h, 25°                                                                                                                                       |                                                                                                                                                             | (98)     | 128                                     |

TABLE II. REACTIONS OF MONOCYCLIC AND SPIROCYCLIC KETONES

| Reactant | Conditions                                                                                                                                                                | Product(s) and Yield(s) (%)                                                                                                                                                                                                                            |                              | Refs.                                                                                          |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------|
| a        | TFPAA (90%), Na2HPO4, CH2Cl2,<br>2 h, reflux                                                                                                                              |                                                                                                                                                                                                                                                        |                              | 201                                                                                            |
|          | 90% H <sub>2</sub> O <sub>2</sub> , polystyrene–AsO <sub>3</sub> H <sub>2</sub> , dioxane,<br>25 h, 80°                                                                   | (62) (6)<br>HO <sub>2</sub> C(CH <sub>2</sub> ) <sub>4</sub> CO <sub>2</sub> H                                                                                                                                                                         | ()                           | 182                                                                                            |
| Č        | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 12 h, 25°                                                                                                                        |                                                                                                                                                                                                                                                        | (74)                         | 134, 182,<br>749, 762,<br>763                                                                  |
|          | 30% $H_2O_1$ , Nafion, $CH_2Cl_2$ , 36 h, heat                                                                                                                            | I + 0 II I:II = 85:15                                                                                                                                                                                                                                  | (86)                         | 220, 323                                                                                       |
| 0        | 30% H <sub>2</sub> O <sub>2</sub> , polystyrene-SeO <sub>2</sub> H, 103 h<br>Na <sub>2</sub> CO <sub>4</sub> , CF <sub>3</sub> CO <sub>2</sub> H, 0°, 1.5 h               | 1:II = 50:50<br>I:II = 72:28                                                                                                                                                                                                                           | (86)<br>(78)                 | 43<br>763a                                                                                     |
| Ŏ        | 35% H <sub>2</sub> O <sub>2</sub> , TECTA, 25°                                                                                                                            | Č                                                                                                                                                                                                                                                      | (100)                        | 230, 923,<br>924                                                                               |
|          | 25% PAA, acetone, 6.25 h, 40°                                                                                                                                             |                                                                                                                                                                                                                                                        | (85)                         | 4, 181,<br>182, 220,<br>221, 574,<br>748, 754,<br>760, 761,<br>762, 763,<br>763a,<br>765, 918, |
|          | MCPBA (85%), CF <sub>3</sub> CO <sub>2</sub> H, CH <sub>2</sub> Cl <sub>2</sub> ,<br>1 b. 0-25°                                                                           |                                                                                                                                                                                                                                                        | (88)                         | 919<br>742, 921,<br>925                                                                        |
|          | NaBO <sub>3</sub> , TFAA, 4–8 h, 50–60°<br>30% H <sub>2</sub> O <sub>2</sub> , polystyrene–SeO <sub>2</sub> H, 96 h<br>CAN, CH <sub>3</sub> CN–H <sub>2</sub> O, 1 h, 60° | "<br>HO <sub>2</sub> C(CH <sub>2</sub> ) <sub>5</sub> OH<br>CH <sub>3</sub> O <sub>2</sub> C(CH <sub>2</sub> ) <sub>5</sub> ONO <sub>2</sub><br>+ CH <sub>3</sub> O <sub>2</sub> C(CH <sub>2</sub> ) <sub>5</sub> CH(CH <sub>3</sub> )ONO <sub>2</sub> | (79)<br>(71)<br>(26)<br>(17) | 114<br>43<br>686                                                                               |
|          | $H_2O_2$ , Se $O_2$                                                                                                                                                       | Ć CO₂H                                                                                                                                                                                                                                                 | (32)                         | 920                                                                                            |
| ОН       | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 24 h, heat                                                                                                                       | о<br>(СН <sub>2</sub> )2ОН                                                                                                                                                                                                                             | (85)                         | 926                                                                                            |
|          | PAA, CHCl <sub>3</sub> , 25°                                                                                                                                              | otot                                                                                                                                                                                                                                                   | (70)                         | 153                                                                                            |

TABLE II. REACTIONS OF MONOCYCLIC AND SPIROCYCLIC KETONES (Continued)

| Reactant                           | Conditions                                                                                    | Product(s) and Yield(s) (%)                                                               |      | Refs.    |
|------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------|----------|
| Å                                  | PMA (90%), CH <sub>2</sub> Cl <sub>2</sub> , 24 h, reflux                                     |                                                                                           | (44) | 185      |
| COCH3                              | 30% H <sub>2</sub> O <sub>2</sub> , t-BuOH, 16 h, heat                                        | HO <sub>2</sub> CCH(CH <sub>3</sub> ) (CH <sub>2</sub> ) <sub>3</sub> CO <sub>2</sub> H I | (93) | 78       |
|                                    | 28% H <sub>2</sub> O <sub>2</sub> , AcOH, 12 h, 20°                                           | I $(67) + HO_2C(CH_2)_3CO_2H$ II (7)                                                      |      | 202      |
| 0                                  | 28% H <sub>2</sub> O <sub>2</sub> , NaOH, 1 h, 20-25°                                         | $+ HO_2CCH(CH_3)(CH_2)_2CO_2H$ III (11)<br>II                                             | (58) | 204      |
| CO <sub>2</sub> CH <sub>3</sub>    | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, 90 min, 100°                                        | п                                                                                         | (74) | 204      |
| CH <sub>2</sub> CH <sub>2</sub> CH | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 4–18 h, 0–25°                                        | CH2CH2CI                                                                                  | (80) | 165      |
| o                                  | CrO3                                                                                          | otot                                                                                      | (—)  | 693      |
| $C_2H_5$                           | K <sub>2</sub> S <sub>2</sub> O <sub>8</sub> , H <sub>2</sub> SO <sub>4</sub> , 12 h, 25°     | O<br>C <sub>2</sub> H <sub>5</sub>                                                        | (40) | 158, 749 |
|                                    | TFPAA (85%), K <sub>2</sub> CO <sub>3</sub> , 12 h, 0°                                        |                                                                                           | (99) | 164      |
| - Chr                              | -                                                                                             |                                                                                           | (—)  | 927      |
| Å                                  | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 6 h, 25°                                             |                                                                                           | (81) | 132      |
|                                    | TFPAA (94%), Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>7 h, 25° | X <sup>0</sup> F <sup>0</sup>                                                             | (42) | 928      |

TABLE II. REACTIONS OF MONOCYCLIC AND SPIROCYCLIC KETONES (Continued)

| Reactant | Conditions                                                                                                                        | Product(s) and Yield(s) (%)                                                                                                                                     |      | Refs.                              |
|----------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------|
| -<br>L   | TFPAA (94%), Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>7 h, 25°                                     | L° J°                                                                                                                                                           | (51) | 928                                |
| Ů        | PAA (anh), AcOH, 8.5 h, 40°                                                                                                       |                                                                                                                                                                 | (92) | 138, 182,<br>222, 754,<br>762, 763 |
|          | [(CH <sub>3</sub> ) <sub>3</sub> Si] <sub>2</sub> O <sub>2</sub> , SnCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 4 h, 25° | $I + \underbrace{\bigcup_{i=0}^{O}}_{(56)} (22)$                                                                                                                |      | 220                                |
| Ļ        | 20–25% PAA, AcOH, 11 h, 40°                                                                                                       |                                                                                                                                                                 | (81) | 754                                |
|          | 34% H <sub>2</sub> O <sub>2</sub> , SeO <sub>2</sub> , t-BuOH, 7 h, 80°                                                           | $\int_{I}^{CO_2H} + \int_{I}^{CO_2H}$                                                                                                                           | (28) | 680                                |
| °∎<br>↓  | 20-25% PAA, AcOH, 9.5 h, 40°                                                                                                      |                                                                                                                                                                 | (84) | 754                                |
|          | 34% H <sub>2</sub> O <sub>2</sub> , SeO <sub>2</sub> , <i>t</i> -BuOH, 7 h, 80°                                                   | ∫<br>∫<br>∫<br>∫                                                                                                                                                | (28) | 680                                |
| Ů        | <ol> <li>TFPAA (90%), Na<sub>2</sub>HPO<sub>4</sub>, CH<sub>2</sub>Cl<sub>2</sub></li> <li>3 h, 0°</li> <li>3 h, 20°</li> </ol>   |                                                                                                                                                                 | (68) | 182 754,<br>919, 929               |
|          | [(CH <sub>3</sub> ) <sub>3</sub> Si] <sub>2</sub> O <sub>2</sub> , SnCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 4 h, 25° |                                                                                                                                                                 |      | 220                                |
|          | H <sub>2</sub> O <sub>2</sub> , SeO <sub>2</sub>                                                                                  | $(50) \qquad (4) \\ CO_2H \qquad \qquad$ | (34) | 920                                |
|          | K <sub>2</sub> SO <sub>5</sub> , H <sub>2</sub> SO <sub>4</sub> , H <sub>2</sub> O, C <sub>2</sub> H <sub>5</sub> OH, 8 h, 15°    | HO(CH <sub>2</sub> ) <sub>6</sub> CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                                                                                 | (85) | 930                                |
|          | PAA                                                                                                                               | otot                                                                                                                                                            | (—)  | 931                                |

TABLE II. REACTIONS OF MONOCYCLIC AND SPIROCYCLIC KETONES (Continued)

|                                                                         | Reactant              | Conditions                                                                                                                        | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | Refs.    |
|-------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|
| $\left( \begin{array}{c} & 0 \\ & N \\ & C_2 H_5 \end{array} \right)^0$ |                       | 30% H <sub>2</sub> O <sub>2</sub> , C <sub>2</sub> H <sub>5</sub> OH, 1–14 d                                                      | C2H5NH(CH2)3CO2H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (76)  | 73       |
|                                                                         | CH3                   | 28% H <sub>2</sub> O <sub>2</sub> , 20°                                                                                           | HO <sub>2</sub> C(CH <sub>2</sub> ) <sub>3</sub> CO <sub>2</sub> H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (76)  | 203      |
|                                                                         |                       | PAA, CHCl <sub>3</sub> , 25°                                                                                                      | $C_2H_5$ $C_2$ $C_2H_5$ $C_2$                                                                                                                                                                                                                                                                                                                                                          | (55)  | 153      |
| 0=                                                                      | ir                    | мсрва                                                                                                                             | Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (84)  | 194      |
| CH <sub>2</sub> C                                                       | CH=CH <sub>2</sub>    | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 25°                                                                 | CH-CH-CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (>55) | 130      |
|                                                                         |                       | [(CH <sub>3</sub> ) <sub>3</sub> Si] <sub>2</sub> O <sub>2</sub> , SnCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 3 h, 25° | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (64)  | 220      |
|                                                                         | HBrCH <sub>2</sub> Br | K <sub>2</sub> S <sub>2</sub> O <sub>8</sub> , H <sub>2</sub> SO <sub>4</sub> , H <sub>2</sub> O                                  | 0 CH <sub>2</sub> CHBrCH <sub>2</sub> Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (>16) | 159      |
|                                                                         | 2                     | 99% MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 25°                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 218      |
|                                                                         |                       | 98% H <sub>2</sub> O <sub>2</sub> , CH <sub>3</sub> CN, 11 d, 25°                                                                 | $(40) \qquad (-) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+) \\ (+)$ |       | 932, 933 |
|                                                                         |                       | TFPAA, CHCla                                                                                                                      | (85–90) (9)<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (77)  | 934      |
| 0                                                                       | ч.                    | 30% H <sub>2</sub> O <sub>2</sub> , t-BuOH, 3 h, heat                                                                             | HO <sub>2</sub> C(CH <sub>2</sub> ) <sub>4</sub> CH(CH <sub>3</sub> )CO <sub>2</sub> H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1-2) | 204,     |
|                                                                         |                       |                                                                                                                                   | + CO <sub>2</sub> H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (87)  | 10       |
|                                                                         | )                     | 30% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> O, 5 d, 25-30°                                                                 | HO <sub>2</sub> CCH <sub>2</sub> C(CH <sub>3</sub> ) <sub>2</sub> CH <sub>2</sub> CO <sub>2</sub> H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (47)  | 203      |
| •                                                                       | н                     |                                                                                                                                   | он                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (—)   | 194      |

TABLE II. REACTIONS OF MONOCYCLIC AND SPIROCYCLIC KETONES (Continued)

۰.

| Reactant                                      | Conditions                                                                                                   | Product(s) and Yield(s) (%)                              |                | Refs.            |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------|------------------|
| CO <sub>2</sub> CH <sub>3</sub>               | 24% PAA, CH <sub>3</sub> CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> , 18 h, 65–70°                        | $ \begin{array}{c}                                     $ | (50)           | 205              |
| CO <sub>2</sub> CH <sub>3</sub>               | 90% H <sub>2</sub> O <sub>2</sub> , polystyrene-AsO <sub>3</sub> H <sub>2</sub> ,<br>26 h, 80°               |                                                          | (0)            | 182              |
| O <sub>2</sub> CCH <sub>3</sub>               | MCPBA, CHCl <sub>3</sub> , 2.5 h, 25°                                                                        |                                                          | (86)           | 199              |
|                                               | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub>                                    |                                                          | (89)           | 935              |
| CH2CO2H                                       | H <sub>2</sub> O <sub>2</sub> , AcOH, 3 h, 70°                                                               | CO <sub>2</sub> H<br>CH <sub>3</sub> CO <sub>2</sub>     | (62)           | 37               |
| ort                                           | H <sub>2</sub> O <sub>2</sub> , KOH                                                                          | otot                                                     | (—)            | 150              |
|                                               | K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> , H <sub>2</sub> SO <sub>4</sub> , H <sub>2</sub> O, 20 h, 45° | otot                                                     | (53)<br>+ (5)* | 694, 695         |
| О<br>С <sub>3</sub> Н <sub>7</sub> - <i>n</i> | K <sub>2</sub> S <sub>2</sub> O <sub>8</sub> , H <sub>2</sub> SO <sub>4</sub> , H <sub>2</sub> O, 12 h, 25°  | O<br>C <sub>3</sub> H <sub>7</sub> -n                    | (41)           | 158, 159,<br>749 |
| О<br>С <sub>3</sub> Н <sub>7</sub> - <i>i</i> | $K_2S_2O_8$ , $H_2SO_4$ , $H_2O$ , 12 h, <10°                                                                | C <sub>3</sub> H <sub>7</sub> - <i>i</i>                 | (37)           | 158              |
|                                               | 40% PAA, NaOAc, CHCl <sub>3</sub> , 18 h, 25°                                                                | N N N N N N N N N N N N N N N N N N N                    | (79)           | 155              |
| Н                                             | 40% PAA, NaOAc, CHCl <sub>3</sub> , 18 h, 25°                                                                | O<br>H                                                   | (84)           | 155              |

TABLE II. REACTIONS OF MONOCYCLIC AND SPIROCYCLIC KETONES (Continued)

| Reactant             | Conditions                                                                                                                        | Product(s) and Yield(s) (%)                                                                    |      | Refs.                |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------|----------------------|
|                      | 40% PAA, 65° then 1.5 h, 25°                                                                                                      |                                                                                                | (71) | 936                  |
| Ĵ.                   | MCPBA, NaOAc, CH <sub>2</sub> Cl <sub>2</sub> , heat                                                                              |                                                                                                | ()   | 168                  |
| Ĵ.                   | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 2 h, reflux                                                                              | Č-                                                                                             | (80) | 140                  |
| Ů.                   | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 2 h, reflux                                                                              | Ů.                                                                                             | (80) | 140                  |
| Ļ                    | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 2.5 h, 25°                                                          | Ĵ.                                                                                             | (94) | 167                  |
| <b>O</b><br><b>U</b> | 30% H <sub>2</sub> O <sub>2</sub> , polystyrene-SeO <sub>2</sub> H, 108 h                                                         | 2° th                                                                                          | (92) | 43, 754              |
| o<br>J<br>m          | PAA, AcOH, 6.75 h, 50°                                                                                                            |                                                                                                | (85) | 754                  |
| , Chan               | PAA, AcOH, 8.75 h, 50°                                                                                                            |                                                                                                | (92) | 754                  |
|                      | _                                                                                                                                 | HOCH <sub>2</sub> CH <sub>2</sub> CO <sub>2</sub> H                                            | (—)  | 142                  |
| ⊖_°                  | PMA (90%), CH <sub>2</sub> Cl <sub>2</sub> , 0°                                                                                   |                                                                                                | (80) | 44, 919,<br>929, 937 |
|                      | [(CH <sub>3</sub> ) <sub>3</sub> Si] <sub>2</sub> O <sub>2</sub> , SnCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 4 h, 25° |                                                                                                |      | 220                  |
|                      | 21% PAA, CH <sub>3</sub> CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> , 8.5 h, 70°                                               | $ \begin{array}{c} & \Pi \\ (11) & (42) \\ I &+ HO_2C(CH_2)_6CO_2H \\ (6) & (59) \end{array} $ |      | 754                  |

|    | Reactant                                | Conditions                                                                                                                 | Product(s) and Yield(s) (%)                                           |       | Refs.                |
|----|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------|----------------------|
| C, | e e e e e e e e e e e e e e e e e e e   | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 1 h, 20°                                                                          |                                                                       | (85)  | 200                  |
|    | i-C <sub>3</sub> H <sub>7</sub>         | PAA, CHCl <sub>3</sub> , 25°                                                                                               | No reaction                                                           | (0)   | 153                  |
|    | CH <sub>2</sub> CH=CH <sub>2</sub>      | 50% H <sub>2</sub> O <sub>2</sub> , C <sub>6</sub> H <sub>5</sub> CN, KHCO <sub>3</sub> , CH <sub>3</sub> OH,<br>40 h, 25° | ů                                                                     | (54)  | 184                  |
|    |                                         | 42% PAA, CHCl <sub>3</sub> , 48 h, 0°                                                                                      | CH2CH=CH2                                                             | (44)  | 182, 184<br>221      |
|    |                                         | BPC, THF, 1 h, 0–25°                                                                                                       |                                                                       | (70)  | 102, 182<br>184 221  |
|    | • <del>-</del>                          | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, CH <sub>3</sub> OH, 2 h, 25°                                                     | 0200                                                                  | (83)  | 148, 190<br>192, 193 |
|    | i.                                      | MCPBA, CICH <sub>2</sub> CH <sub>2</sub> Cl, 6 h, heat                                                                     | (CH <sub>2</sub> ) <sub>3</sub> CO <sub>2</sub> H                     | (>81) | 938                  |
|    | CH <sub>2</sub> CHBrCHBrCH <sub>3</sub> | K2SO5, H2SO4, H2O, 12 h, <10°                                                                                              | O CH <sub>2</sub> CHBrCHBrCH <sub>3</sub>                             | (19)  | 159                  |
|    |                                         | 99% MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 25°                                                                           |                                                                       |       | 218                  |
|    | О СН3                                   | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 25°                                                          |                                                                       | (78)  | 198a                 |
|    | CH <sub>3</sub> CO                      | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 25°                                                                               | CH <sub>3</sub> CO                                                    | (79)  | 110                  |
|    | COCH3                                   | 28% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> O, 12 h, 20°                                                            | $(90) (4) + HO_2C(CH_2)_4CO_2H + HO_2CC(CH_3)_2(CH_2)_4CO_2H (trace)$ |       | 78, 202              |
|    | COC <sub>2</sub> H <sub>5</sub>         | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, 1 h, 20-25°                                                                      | $(59) CO_2H + HO_2C(CH_2)_4CO_2H$                                     |       | 204                  |
|    | CO2C2H5                                 | <ol> <li>98% H<sub>2</sub>O<sub>2</sub>, H<sub>2</sub>SO<sub>4</sub></li> <li>benzene, 6 h, heat</li> </ol>                | CO <sub>2</sub> H                                                     | (64)  | 774                  |
| Reactant                                      | Conditions                                                                                                   | Product(s) and Yield(s) (%)                                                                       |      | Refs.            |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------|------------------|
| CO <sub>2</sub> CH <sub>3</sub>               | MCPBA, Li <sub>2</sub> CO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 13.5 h, reflux                    | $\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $                           |      | 145, 206         |
| CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | 24% PAA, CH <sub>3</sub> CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> , 6 h, 70°                            | $\begin{pmatrix} (76) \\ CO_2C_2H_5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $             | (93) | 205              |
| CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | 24% PAA, CH <sub>3</sub> CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> , 60-70°                              | C <sub>2</sub> H <sub>3</sub> O <sub>2</sub> CCO(CH <sub>2</sub> ) <sub>4</sub> CO <sub>2</sub> H | (80) | 205              |
| C2H5O2C                                       | 24% PAA, CH <sub>3</sub> CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> , 18 h, 60°                           | C <sub>2</sub> H <sub>5</sub> O <sub>2</sub> C                                                    | (55) | 205              |
| C <sub>4</sub> H <sub>9</sub> -n              | K <sub>2</sub> SO <sub>5</sub> , H <sub>2</sub> SO <sub>4</sub> , H <sub>2</sub> O, 12 h, 25°                | O C4Hg-n                                                                                          | (57) | 158, 159,<br>749 |
| C4H9-i                                        | K <sub>2</sub> S <sub>2</sub> O <sub>8</sub> , H <sub>2</sub> SO <sub>4</sub> , H <sub>2</sub> O, 12 h, <10° | 0 0 C4H9-i                                                                                        | (33) | 158              |
| C4H9-S                                        | K <sub>2</sub> S <sub>2</sub> O <sub>8</sub> , H <sub>2</sub> SO <sub>4</sub> , H <sub>2</sub> O, 12 h, <10° | 0 C4H9-s                                                                                          | (50) | 158              |
| C <sub>3</sub> H <sub>7</sub> -i              | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 3 d, 25°                                       | °C3H7-i                                                                                           | (64) | FKPs             |
| ↓ °L                                          | PAA, AcOH, 9 h, 50°                                                                                          | tofo                                                                                              | (85) | 754              |
| Ŷ                                             | 85% MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 4 h, 25°                                   | j°-                                                                                               | (98) | 141, 167         |
|                                               | PAA, AcOH, 13 h, 50°                                                                                         | $\int_{-\infty}^{0} f^{\circ} + \int_{-\infty}^{0} f^{\circ}$                                     | (70) | 754              |
| О<br>С2H5                                     | TFPAA (>85%), NaH2PO4, CH2Cl2,<br>0–25°                                                                      | O<br>-C <sub>2</sub> H <sub>5</sub>                                                               | (70) | 174              |

TABLE II REACTIONS OF MONOCYCLIC AND SPIROCYCLIC KETONES (Continued)

|                 | Reactant                                        | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | Refs.           |
|-----------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------|
|                 |                                                 | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (>52) | 939             |
|                 | (CH <sub>3</sub> ) <sub>3</sub> Si              | MCPBA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 4 h, 25°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (CH <sub>3</sub> ) <sub>3</sub> Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (99)  | 94              |
|                 | OSi(CH <sub>3</sub> ) <sub>3</sub>              | MCPBA, ether, 18 h, 25°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $CH_3O_2C(CH_2)_4CH(OCH_3)_2$ I<br>+ $CH_3O_2C(CH_2)_4CO_2CH_3$ II<br>I:II = 36:64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (90)  | 197             |
|                 | $\mathbb{H}$                                    | H <sub>2</sub> O <sub>2</sub> , AcOH, H <sub>2</sub> SO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | J.L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ()    | 940             |
|                 | CH CO                                           | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, CH <sub>3</sub> OH, 2.5 h, 25°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (82)  | 148, 190<br>192 |
| C <sub>10</sub> | MCPBA (1 eq), CHCl3, 6 d, 25°                   | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 219   |                 |
|                 |                                                 | MCPBA (3 eq), CHCl <sub>3</sub> , 6 d, 25°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | II<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (77)  | 219             |
|                 | A Po                                            | MCPBA, CHCl <sub>3</sub> , 6 d, 25°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (74)  | 219             |
|                 | COCO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | 30% H <sub>2</sub> O <sub>2</sub> , KOH, 1 h, 20-25°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $HO_2CCO_2C_2H_5 + HO_2C(CH_2)_5CO_2H$<br>(50) (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 203             |
|                 | 1-C4H9 CI 0                                     | PAA, CHCl <sub>3</sub> , 25°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0)   | 153             |
|                 | log d                                           | MCPBA, CH <sub>2</sub> Cl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ů de la construction de la const | (89)  | 220             |
|                 |                                                 | [(CH <sub>3</sub> ) <sub>3</sub> Si] <sub>2</sub> O <sub>2</sub> , BF <sub>3</sub> etherate, CH <sub>2</sub> Cl <sub>2</sub> ,<br>4.5 h, 25°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ° ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (44)  | 220             |
|                 |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                 |

TABLE II. REACTIONS OF MONOCYCLIC AND SPIROCYCLIC KETONES (Continued)

|                        | Reactant                                             | Conditions                                                                                                                                   | Product(s) and Yield(s) (%)                                                                                                                                                                           |       | Refs.            |
|------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------|
| ċ                      | C <sub>2</sub> H <sub>5</sub>                        | [(CH <sub>3</sub> ) <sub>3</sub> Si] <sub>2</sub> O <sub>2</sub> , BF <sub>3</sub> etherate, CH <sub>2</sub> Cl <sub>2</sub> ,<br>4.5 h, 25° | $ \begin{array}{c} 0 \\ \downarrow \\ 0 \\ \downarrow \\ \hline \\ \\ - \\ \hline \\ \\ C_2H_5 \end{array} $ (50) $ + \begin{array}{c} C_{02H} \\ 0H \\ 0H \\ \hline \\ \\ C_{2H_5} \end{array} $ (8) |       | 220              |
| $\bigcap_{\mathbf{o}}$ | CH <sub>2</sub>                                      | 40% PAA                                                                                                                                      | CH <sub>2</sub>                                                                                                                                                                                       | (—)   | 682              |
| j.                     | 2                                                    | MCPBA, CHCl <sub>3</sub> , 25°                                                                                                               | ů.                                                                                                                                                                                                    | (—)   | 697              |
| 9                      | ſ,                                                   | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, CH <sub>3</sub> OH-H <sub>2</sub> O                                                                | ()<br>o<br>o                                                                                                                                                                                          | (100) | 148, 190,<br>192 |
| $\sim$                 | ↓<br>N <sub>2</sub>                                  | 99% MCPBA, CH2Cl2, 25°                                                                                                                       |                                                                                                                                                                                                       | (95)  | 218              |
|                        | H <sub>2</sub> CHBrCHBrC <sub>2</sub> H <sub>5</sub> | PBA, TsOH, CHCl <sub>3</sub> , 4 h, 0-25°                                                                                                    | O CH <sub>2</sub> CHBrCHBrC <sub>2</sub> H <sub>5</sub>                                                                                                                                               | (>67) | 156, 159         |
| o H                    | )<br>C4H9-1                                          | PAA, CHCl <sub>3</sub> , 25°                                                                                                                 | $ \underset{O}{=} \underbrace{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                             | (15)  | 153              |
| ↓°<br>↓                | $\vdash$                                             | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 20°                                                                                                 | J.                                                                                                                                                                                                    | (75)  | 172              |
| ,<br>,                 | )<br>ò                                               | TFPAA, Na2HPO4, 2 h, 0°, 1 h, 25°                                                                                                            |                                                                                                                                                                                                       | (82)  | 211              |
|                        | >                                                    | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 31 d, 25°, or 48 h, 45°                                                                             |                                                                                                                                                                                                       | (0)   | 196              |

TABLE II. REACTIONS OF MONOCYCLIC AND SPIROCYCLIC KETONES (Continued)

| Reactant                                                                      | Conditions                                                                                                                                 | Product(s) and Yield(s) (%)                                                                                                 |              | Refs.                 |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------|
| CH <sub>2</sub> CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                 | PBA, CHCl <sub>3</sub> , 15d                                                                                                               | CH <sub>2</sub> CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                                                               | ()           | 692                   |
| ° o                                                                           | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , 2 h, 0°, 48 h, 25°                                                                               | $0 = \underbrace{0}_{0} \underbrace{0}_{0} = 0  (12)$ $+ \underbrace{0}_{0} \underbrace{0}_{0} \underbrace{0}_{0} = 0  (3)$ |              | 211                   |
| N<br>N<br>O                                                                   | 15% H2O2, NaOH, C2H3OH, −10 to 25°                                                                                                         | CH3CO(CH2)5CO2H                                                                                                             | (33)         | 158                   |
| <i>n</i> -C <sub>4</sub> H <sub>9</sub>                                       | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, CH <sub>3</sub> OH, 4 h, 25°                                                                     | n-C4H9                                                                                                                      | (64)         | 152                   |
|                                                                               | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, CH <sub>3</sub> OH, 4 h, 25°                                                                     |                                                                                                                             | (95)         | 152                   |
| O<br>C <sub>5</sub> H <sub>11</sub> - <i>n</i>                                | K <sub>2</sub> SO <sub>5</sub> , H <sub>2</sub> SO <sub>4</sub> , 4 h, 25°                                                                 | <sup>0</sup> C <sub>5</sub> H <sub>11</sub> - <i>n</i>                                                                      | (51)         | 158, 159,<br>749      |
| O<br>(CH <sub>2</sub> ) <sub>2</sub> C <sub>3</sub> H <sub>7</sub> - <i>i</i> | $K_2S_2O_8$ , $H_2SO_4$ , $H_2O$ , 12 h, <10°                                                                                              | $O (CH_2)_2C_3H_7-i$                                                                                                        | (38)         | 158                   |
| CH(C <sub>2</sub> H <sub>5)2</sub>                                            | $K_2S_2O_8$ , $H_2SO_4$ , $H_2O$ , 12 h, <10°                                                                                              | $O \rightarrow CH(C_2H_5)_2$                                                                                                | (43)         | 158                   |
|                                                                               | [(CH <sub>3</sub> ) <sub>3</sub> Si] <sub>2</sub> O <sub>2</sub> , BF <sub>3</sub> etherate, CH <sub>2</sub> Cl <sub>2</sub> ,<br>2 d, 25° |                                                                                                                             | (88)         | 220, 221,<br>222, 941 |
|                                                                               | MCPBA (2 eq), solid state, 30 min, 25°<br>MCPBA, CHCl <sub>3</sub>                                                                         | r-C4A9<br>"                                                                                                                 | (95)<br>(94) | 740<br>740            |
| i-C <sub>3</sub> H <sub>7</sub>                                               | МСРВА                                                                                                                                      | i-C <sub>3</sub> H <sub>7</sub> 0 0                                                                                         | (80)         | 183, 492,<br>942      |
| C4H9-S                                                                        | PAA, AcOH, 13 h, 50°                                                                                                                       | C <sub>4</sub> H <sub>9</sub> -s                                                                                            | (92)         | 754                   |

TABLE II. REACTIONS OF MONOCYCLIC AND SPIROCYCLIC KETONES (Continued)

463

|    | Reactant                                                  | Conditions                                                                                                                        | Product(s) and Yield(s) (%)                                                                                                    |                   | Refs.    |
|----|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|
|    | $\sim$                                                    | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , TBMP, 50°                                                                                |                                                                                                                                | (61)              | 131      |
|    | $\square_{\circ}$                                         | MCPBA, CHCl <sub>3</sub> , 48 h, heat                                                                                             |                                                                                                                                | (87)              | 177, 178 |
|    |                                                           | [(CH <sub>3</sub> ) <sub>3</sub> Si] <sub>2</sub> O <sub>2</sub> , SnCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 3 h, 25° | I (24) + OH (35)                                                                                                               |                   | 220      |
|    | CH <sub>2</sub> OC <sub>3</sub> H <sub>7</sub> - <i>i</i> | 28% H <sub>2</sub> O <sub>2</sub> , Na <sub>2</sub> CO <sub>3</sub> , 1 h, 25°                                                    | HO <sub>2</sub> C(CH <sub>2</sub> ) <sub>4</sub> CO <sub>2</sub> H                                                             | (70)              | 204      |
|    | он<br>он                                                  | 85% MCPBA, CH2Cl2, 3 d, 20°                                                                                                       | он<br>он                                                                                                                       | (85)              | 172, 943 |
|    | CH <sub>2</sub> Si(CH <sub>3</sub> ) <sub>3</sub>         | MCPBA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 4 h, 25°                                              | CH <sub>2</sub> Si(CH <sub>3</sub> ) <sub>3</sub>                                                                              | (96)              | 94       |
|    | Si(CH <sub>3</sub> ) <sub>3</sub>                         | MCPBA, Na2HPO4, CH2Cl2, 4 h, 25°                                                                                                  | $ \begin{array}{c} 0 \\ 0 \\ 0 \\ Si(CH_3)_3 \end{array} + \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$ | (>75)             | 94       |
|    |                                                           | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 4 h, 25°                                                                                 | I major II minor<br>II<br>Q                                                                                                    | (>63)             | 94       |
|    | Si(CH <sub>3</sub> ) <sub>3</sub>                         | MCPBA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> -H <sub>2</sub> O,<br>2.5 h, 25°                        | Si(CH <sub>3</sub> ) <sub>3</sub>                                                                                              | (88)              | 208      |
|    | OSi(CH <sub>3</sub> ) <sub>3</sub>                        | MCPBA, ether, 18 h, 25°                                                                                                           | CH <sub>3</sub> O <sub>2</sub> CCH(CH <sub>3</sub> ) (CH <sub>2</sub> ) <sub>3</sub> CH(OCH <sub>3</sub> ) <sub>2</sub>        | (50–60)           | 197      |
| Cu | C <sub>6</sub> H <sub>5</sub>                             | 15% H <sub>2</sub> O <sub>2</sub> , NaOH, 20 min, −10 to 25°                                                                      | $C_{6}H_{5}O$ $C_{6}H_{5}O$ $(24) + C_{6}H_{5}CO(CH_{2})_{3}C$ $C_{6}H_{5}$                                                    | (41)*<br>O₂H (33) | 179      |
|    | $C_6H_5$ OCH <sub>3</sub><br>cis:trans = 9:91             | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 25°                                                                 | C <sub>6</sub> H <sub>5</sub> OCH <sub>3</sub>                                                                                 | (81)              | 198a     |
|    | HOHH                                                      | H2O2, NaOH                                                                                                                        |                                                                                                                                | (—)               | 194      |

TABLE II. REACTIONS OF MONOCYCLIC AND SPIROCYCLIC KETONES (Continued)

| Reactant                                         | Conditions                                                                                                                        | Product(s) and Yield(s) (%)                                     | Refs.                |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------|
| CH2CHBrCHBrC3H7-n                                | K2SO5, H2SO4, H2O, 12 h, <10°                                                                                                     | O CH <sub>2</sub> CHBrCHBrC <sub>3</sub> H <sub>7</sub> -n (3   | 22) 159              |
| H H O                                            | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 23 h, 5°                                                            | H H O (                                                         | 73) 133              |
| 0 C <sub>6</sub> H <sub>13</sub> -n              | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, CH <sub>3</sub> OH, 2 h, 25°                                                            | $O = O C_0 H_{13} - n $ (10)                                    | 00) 148, 190,<br>192 |
| O<br>↓ C <sub>6</sub> H <sub>13</sub> - <i>n</i> | K2SO5, H2SO4, 4 h, 25°                                                                                                            | $O = O = C_6 H_{13} - n $                                       | 47) 158, 159,<br>749 |
|                                                  | MCPBA, CHCl <sub>3</sub> , 60°                                                                                                    |                                                                 | —) 157               |
| H H O                                            | MCPBA, CHCl <sub>3</sub> , 60°                                                                                                    |                                                                 | —) 157               |
| t-CaH9                                           | C6H3SeO3H, Na2HPO4, CH2Cl2, 2 h                                                                                                   | r-C4H9                                                          | 33) 222              |
| ~~~~=o                                           | [(CH <sub>3</sub> ) <sub>3</sub> Si] <sub>2</sub> O <sub>2</sub> , SnCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 4 h, 25° | OH<br>OH<br>OH                                                  | 220                  |
| OSO <sub>2</sub> CH <sub>3</sub>                 | MCPBA, CHCl <sub>3</sub> , 48 h, heat                                                                                             | I II<br>(30) (33)<br>I (30)<br>OSO <sub>2</sub> CH <sub>3</sub> | 37) 177, 178         |
| ↓<br>↓                                           | 85% MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 4 d, 20°                                                                             | tot a                                                           | 85) 173, 943         |
| 0<br>(CH <sub>3</sub> ) <sub>3</sub> Si          | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 4 d, 25°                                                                                 | $C_{2H_{5}} O O O O O O O O O O O O O O O O O O $               | 94) 207              |
| C <sub>12</sub>                                  |                                                                                                                                   | + $(CH_3)_3Si$ $H_{C_2H_5}$ O                                   |                      |
| OC6H5                                            | MCPBA, NaHCO3                                                                                                                     |                                                                 | 00) 146              |

TABLEI TIONS OF MONOCYCLIC AND SPIROCYCLIC KETONES (Continued) Dree

466

| Conditions                                                                                                                                 | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Refs.                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| PAA, AcOH, acetone or CH <sub>3</sub> CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> ,<br>8 h, 40°                                          | O CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                    | (85)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 158, 183                                               |
| 90% H <sub>2</sub> O <sub>2</sub> , polystyrene-AsO <sub>3</sub> H <sub>2</sub> ,<br>dioxane, 15 h, 80°                                    | C <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                      | (85)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 180, 181,<br>182, 762                                  |
| MCPBA, CHCl <sub>3</sub> , <2 h, 25°                                                                                                       | Xo Jo ox                                                                                                                                                                                                                                                           | (65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 301                                                    |
| 30% H <sub>2</sub> O <sub>2</sub> , C <sub>6</sub> H <sub>3</sub> SeO <sub>2</sub> H, Na <sub>2</sub> HPO <sub>4</sub> ,<br>THF, 13 h, 45° | HO, H CH=CH <sub>2</sub><br>CH <sub>3</sub> O <sub>2</sub> CCH <sub>2</sub> H                                                                                                                                                                                      | (63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 222                                                    |
| PAA (anh), AcOH, 10 h, 50°                                                                                                                 |                                                                                                                                                                                                                                                                    | (82)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 754                                                    |
| K₂SO5, H₂SO4, H₂O, 12 h, <10°                                                                                                              | O CH <sub>2</sub> CHBrCHBrC <sub>4</sub> H <sub>9</sub> - <i>n</i>                                                                                                                                                                                                 | (23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 159                                                    |
| 99% MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 25°                                                                                           |                                                                                                                                                                                                                                                                    | (92)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 218                                                    |
| H <sub>2</sub> O <sub>2</sub> , AcOH, 3 h, 70°                                                                                             | $t - C_4 H_9 O_2 C $ $(81)$ $CO_2 H$ $+ t - C_4 H_9 O_2 C $ $O_2 C C H_3$ $O_2 C C H_3$                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37                                                     |
| K <sub>2</sub> SO <sub>5</sub> , H <sub>2</sub> SO <sub>4</sub> , 4 h, 25°                                                                 | $O_{\text{C}_{7}\text{H}_{15}\text{-}n}$                                                                                                                                                                                                                           | (49)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 158, 159,<br>749                                       |
| РАА                                                                                                                                        | n-C <sub>6</sub> H <sub>13</sub> CHOH(CH <sub>2</sub> ) <sub>4</sub> CO <sub>2</sub> H                                                                                                                                                                             | (74–90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 171                                                    |
| TFPAA (>85%), NaH2PO4, CH2Cl2,<br>0-25°                                                                                                    | O<br>-C5H11-n                                                                                                                                                                                                                                                      | (—)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 174                                                    |
| [(CH <sub>3</sub> ) <sub>3</sub> Si] <sub>2</sub> O <sub>2</sub> , SnCl <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>2.5 h, 25°     |                                                                                                                                                                                                                                                                    | ЭН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 220                                                    |
|                                                                                                                                            | PAA, AcOH, acetone or CH <sub>3</sub> CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> ,<br>8 h, 40°           90% H <sub>2</sub> O <sub>2</sub> , polystyrene–AsO <sub>3</sub> H <sub>2</sub> ,<br>dioxane, 15 h, 80°           MCPBA, CHCl <sub>3</sub> , <2 h, 25° | Product(s) and Thelig(s (w)PAA, AcOH, acctone or CH_3CO_2C_3H_3,<br>8 h, 40" $\widehat{\Box}_{1,0} \subset CH_2C_9H_3$ 90% H_2O_3, polystyrene-AsO_3H_3,<br>dioxane, 15 h, 80" $\widehat{\Box}_{1,0} \subset CH_2C_9H_3$ 90% H_2O_3, C_4H_3SeO_3H, Na_3HPO.,<br>THE, 13 h, 45" $\widehat{\Box}_{1,0} \subset CH_2C_9H_2 \subset H_2C_9H_1$ 80% H_2O_3, C_4H_3SeO_3H, Na_3HPO.,<br>THE, 13 h, 45" $\widehat{CH}_{2,0} \subset CH_2C_9H_2 \subset H_2C_9H_1$ 90% MCPBA, CH_2O_12 h, <10" | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

TABLE II. REACTIONS OF MONOCYCLIC AND SPIROCYCLIC KETONES (Continued)

|     | Reactant                                          | Conditions                                                                             | Product(s) and Yield(s) (%)                                                                                                                        |         | Refs.                                           |
|-----|---------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------|
| 47  |                                                   | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 20 h, heat                                    | 1                                                                                                                                                  | (90)    | 177, 178,<br>744, 944,<br>945, 946,<br>947, 948 |
| 6   | CH <sub>2</sub> Si(CH <sub>3</sub> ) <sub>3</sub> | MCPBA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 3 h, 25°   | CH <sub>2</sub> Si(CH <sub>3</sub> ) <sub>3</sub>                                                                                                  | (92)    | 139                                             |
|     | TBDMSO                                            | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 24 h, heat                                    | TBDMSO                                                                                                                                             | (67)    | 926                                             |
| Cıs | COC6H2                                            | 30% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , t-BuOH, 2 h, 100° | Ć∕- <sup>CO</sup> 2H                                                                                                                               | (85)    | 78, 204                                         |
|     | 0 = + + + + + + + + + + + + + + + + + +           | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, CH <sub>3</sub> OH–H <sub>2</sub> O          | $ \begin{array}{c} 0\\ 0\\ -C_4H_{9^{-t}}\\ III\\ (70) \end{array} + \begin{array}{c} 0\\ -C_4H_{9^{-t}}\\ C_4H_{9^{-t}}\\ IV\\ (30) \end{array} $ |         | 148, 190,<br>192                                |
|     | О<br>С <sub>8</sub> Н <sub>17</sub> - <i>п</i>    | K2S2O8, H2SO4, H2O, 12 h, <10°                                                         | III:IV = 70:30                                                                                                                                     | (53)    | 158, 749                                        |
| 471 | п-С <sub>4</sub> Н9                               | 30% H <sub>2</sub> O <sub>2</sub> , AcOH, 3 d, 50°                                     | n-C4H9<br>C4H9-n                                                                                                                                   | (30)    | 949                                             |
|     | о<br>С <sub>7</sub> Н <sub>15</sub> - <i>п</i>    | PAA                                                                                    | n-C7H15CHOH(CH2)6CO2H                                                                                                                              | (74–90) | 171                                             |
|     | $C_{3}H_{11}-n$                                   | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub>              | 0<br>0<br>0                                                                                                                                        | (75)    | 939                                             |
|     | $\sim\sim$                                        | MCPBA, CHCl <sub>3</sub> , 70°                                                         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                             | (91)    | 175, 176,<br>177, 178                           |

TABLE II. REACTIONS OF MONOCYCLIC AND SPIROCYCLIC KETONES (Continued)

| 1               | Reactant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Conditions                                                                                                   | Product(s) and Yield(s) (%)                                                                       |         | Refs.    |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------|----------|
|                 | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MCPBA, CHCl <sub>3</sub> , 48 h, heat                                                                        |                                                                                                   | (87)    | 177, 178 |
| C <sub>14</sub> | Si(CH <sub>3</sub> ) <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MCPBA, 29 h, 25°                                                                                             | СНО                                                                                               | (60)    | 217      |
| 472             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 3 h, 25°                         | Ů<br>N<br>N                                                                                       | (43)    | 201      |
|                 | O <sub>2</sub> CC <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 0°                                             | O <sub>2</sub> CC <sub>6</sub> H <sub>5</sub>                                                     | (90)    | 137      |
|                 | о<br>С <sub>9</sub> Н <sub>19</sub> -л                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | K <sub>2</sub> S <sub>2</sub> O <sub>8</sub> , H <sub>2</sub> SO <sub>4</sub> , H <sub>2</sub> O, 12 h, <10° | 0, 0, C <sub>9</sub> H <sub>19</sub> - <i>n</i>                                                   | (37)    | 158      |
|                 | О<br>С <sub>8</sub> Н <sub>17</sub> -п                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | РАА                                                                                                          | л-С8H17CHOH(CH2)4CO2H                                                                             | (75–90) | 171      |
|                 | $ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & + & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $ | PAA (anh), AcOH, 11 h, 50°                                                                                   |                                                                                                   | (80)    | 754      |
| 473             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40% PAA, BF3 etherate, CHCl3, 40 h, 45°                                                                      |                                                                                                   | (65)    | 176      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MCPBA, CHCl <sub>3</sub> , 48 h, heat                                                                        | $\sim \sim $ | (87)    | 177, 178 |
|                 | Si(CH <sub>3</sub> ) <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 10 min, 0°                                                          | O<br>Si(CH <sub>3</sub> ) <sub>3</sub>                                                            | .(>90)  | 217      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 4 h, 25°                                                            | СССН3                                                                                             | (90)    | 217      |

TABLE II. REACTIONS OF MONOCYCLIC AND SPIROCYCLIC KETONES (Continued)



| -   | Reactant                                                                                                                 | Conditions                                                                                                 | Product(s) and Yield(s) (%)                                                                                              |         | Refs.                |
|-----|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------|----------------------|
|     |                                                                                                                          | MCPBA, CHCl <sub>3</sub> , 48 h, heat                                                                      | $\sim \sim $                        | (87)    | 177, 178             |
|     | CH2OTBDMS                                                                                                                | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 0–5°                                         | H H O                                                                                                                    | (90)    | 417                  |
| 476 | H.H.O                                                                                                                    | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 14 h, 5–25°                                  |                                                                                                                          | (95)    | 133, 416             |
| C16 | O<br>C <sub>2</sub> H <sub>5</sub><br>O <sub>2</sub> CC <sub>6</sub> H <sub>3</sub> (NO <sub>2</sub> ) <sub>2</sub> -3,5 | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 72 h, 25°                                    | O<br>C <sub>2</sub> H <sub>5</sub><br>O <sub>2</sub> CC <sub>6</sub> H <sub>3</sub> (NO <sub>2</sub> ) <sub>2</sub> -3,5 | (100)   | 135                  |
|     | N(CH <sub>3</sub> )Ts                                                                                                    | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 25°                                          | N(CH <sub>3</sub> )Ts                                                                                                    | (84)    | 198a                 |
|     | <i>p</i> -CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> Si(CH <sub>3</sub> ) <sub>3</sub>                                | MCPBA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> -H <sub>2</sub> O,<br>2.5 h, 25° | <i>p</i> -CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub>                                                                  | (94)    | 208, 209             |
|     | О<br>Со <sub>2</sub> СН <sub>3</sub><br>С <sub>9</sub> Н <sub>19</sub> -л                                                | MCPBA, NaHCO <sub>3</sub> , CHCl <sub>3</sub> , 48 h, 25°                                                  | O<br>Co <sub>2</sub> CH <sub>3</sub><br>C <sub>9</sub> H <sub>19</sub> - <i>n</i>                                        | (>85)   | 950                  |
| •   | О<br>С <sub>11</sub> Н <sub>23</sub> - <i>п</i>                                                                          | MCPBA, CHCl <sub>3</sub> , 20 h, 25°                                                                       | о<br>С <sub>11</sub> Н <sub>23</sub> - <i>п</i>                                                                          | (—)     | 684                  |
| 77  | О<br>С <sub>10</sub> Н <sub>21</sub> - <i>п</i>                                                                          | раа                                                                                                        | <i>n</i> -C <sub>10</sub> H <sub>21</sub> CHOH(CH <sub>2</sub> ) <sub>4</sub> CO <sub>2</sub> H                          | (74–90) | 171                  |
|     | C                                                                                                                        | 40% PAA, BF <sub>3</sub> etherate, CHCl <sub>3</sub> , 40 h, 45°                                           | C c c c c c c c c c c c c c c c c c c c                                                                                  | (65)    | 176                  |
|     | Ś                                                                                                                        | MCPBA, CHCl <sub>3</sub> , 48 h, heat                                                                      | ~~~~°                                                                                                                    | (87)    | 177, 178<br>945, 951 |



|                 | Reactant                                                                                                  | Conditions                                             | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                        | Refs.    |
|-----------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------|
| C <sub>18</sub> | CH30                                                                                                      | 70% t-BuO2H, N2OH, THF, 1.6 h, 0°                      | CH <sub>3</sub> O H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (92)                     | 186      |
| c               | CH30                                                                                                      | 70% 1-BuO₂H, NaOH, THF, 1.6 h, 0°                      | CH30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (85)                     | 186      |
| c               | CH <sub>3</sub> O                                                                                         | 70% <i>t</i> -BuO <sub>2</sub> H, NaOH, THF, 1.6 h, 0° | CH-O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (79)                     | 186      |
| l               | CH(OCH <sub>3</sub> )C <sub>6</sub> H <sub>5</sub>                                                        | H₂O₂, №OH, CH₃OH                                       | CH(OCH <sub>3</sub> )C <sub>6</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (93–98)                  | 191      |
| c               | CH <sub>3</sub> CO <sub>2</sub>                                                                           | 40% PAA, BF <sub>3</sub> etherate, 12 h, 50°           | CH <sub>3</sub> CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (44)                     | 945      |
|                 | O<br>C12H25-71                                                                                            |                                                        | + , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |          |
| [               | С <sub>6</sub> Н <sub>13</sub> -л                                                                         | PAA<br>40% PAA, BF3 etherate, CHCl3, 48 h, 45°         | $n-C_{12}H_{25}CHOH(CH_2)_4CO_2H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (74–90)<br>(49)<br>(33)* | 171      |
| C <sub>19</sub> | О<br>(CH <sub>2</sub> ) <sub>3</sub> CO <sub>2</sub> H<br>С <sub>5</sub> H <sub>11</sub> - <i>n</i><br>ОН | 30% H <sub>2</sub> O <sub>2</sub> , AcOH, 12 h, 0-5°   | $O = \begin{pmatrix} C_{12} \\ C_{3} \\ C_{3} \\ C_{11} \\ C_{11}$ | (95)                     | 151. 224 |

TABLE II. REACTIONS OF MONOCYCLIC AND SPIROCYCLIC KETONES (Continued)



TABLE II. REACTIONS OF MONOCYCLIC AND SPIROCYCLIC KETONES (Continued)

TABLE II. REACTIONS OF MONOCYCLIC AND SPIROCYCLIC KETONES (Continued)



| _               | Reactant                                                | Conditions                                                         | Product(s) and Yield(s) (%)                                                         |       | Refs.    |
|-----------------|---------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------|----------|
|                 | TBDMSO                                                  | H <sub>2</sub> O <sub>2</sub> , NaOH                               | TBDMSO                                                                              | (92)  | 194      |
| 486             | <i>n</i> -C <sub>11</sub> H <sub>23</sub>               | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 20 h | n-C <sub>11</sub> H <sub>23</sub> .                                                 | (60)  | 209ь     |
| C <sub>25</sub> | THPOCH <sub>2</sub> (CH <sub>2</sub> ) <sub>3</sub> OBn | 85% MCPBA, NaOAc, CH <sub>2</sub> Cl <sub>2</sub> , 17 h, heat     | THPOCH <sub>2</sub> (CH <sub>2</sub> ) <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | (70)  | 129, 952 |
| 6.26            | OBn OBn                                                 | H <sub>2</sub> O <sub>2</sub> , AcOH                               | BnO C4Hg-n                                                                          | (85)  | 198      |
|                 |                                                         | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 0°   |                                                                                     | (78)  | 195      |
| C <sub>27</sub> | $C_6H_5CO_2$<br>H O<br>CO_2H                            | 25% PAA, CH3CO2C2H5, 6 d, 55-58°                                   | $C_6H_5CO_2$<br>H<br>CO_2H<br>(46)                                                  | (35)* | 144      |
| 487             |                                                         |                                                                    | + $C_6H_5CO_2$<br>+ $H$ $O$ $O_2CC_6H_5$<br>(minor)                                 |       |          |

| and an and an and an and a state of the brinder of the former and | TA | BL | E | II. | . 1 | REACTIONS | OF | MONOCYCLIC | AND | SPIROCYCLIC | KETONES | (Continued) | ) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|---|-----|-----|-----------|----|------------|-----|-------------|---------|-------------|---|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|---|-----|-----|-----------|----|------------|-----|-------------|---------|-------------|---|

| , CH <sub>2</sub> Cl <sub>2</sub>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| , CH <sub>2</sub> Cl <sub>2</sub>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| , 25°                                                           | (35) + (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| +                                                               | (10)*<br>(10)*<br>(10)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| , CH <sub>2</sub> Cl <sub>2</sub> , 10 d, 25°<br>O=<br>+<br>HOC | $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$                                                                                                                                                                                                                                                          | 953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| h                                                               | h, 25°<br>h, 25 | $h_{2}, CH_{2}Cl_{2}$ $(-)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ |

TABLE II. REACTIONS OF MONOCYCLIC AND SPIROCYCLIC KETONES (Continued)



TABLE II. REACTIONS OF MONOCYCLIC AND SPIROCYCLIC KETONES (Continued)



TABLE III. REACTIONS OF FUSED-RING KETONES

|       | Reactant                   | Conditions                                                                           | Product(s) and Yield(s) (%)                                                                                                                                                      |              | Refs.            |
|-------|----------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|
|       | $\supset$                  | PAA, AcOH (glacial), 16 h                                                            |                                                                                                                                                                                  |              | 226              |
|       |                            | PAA, AcOH (90%), 16 h<br>30% H <sub>2</sub> O <sub>2</sub> , AcOH (90%),<br>24 h, 0° | 1 II<br>(8) (25)<br>II<br>II                                                                                                                                                     | (36)<br>(27) | 226<br>242       |
|       | >                          | MCPBA, NaHCO <sub>3</sub> , CHCl <sub>3</sub> ,<br>3 h, 25°                          | $Br, H \rightarrow Br, H \rightarrow O$                                                                                                                                          |              | 226              |
|       |                            | MCPBA, NaHCO3, CHCl3,<br>3 h, 5°                                                     | I II<br>(25) (28)<br>I (75)<br>O                                                                                                                                                 |              | 226              |
|       |                            | 30% H <sub>2</sub> O <sub>2</sub> , AcOH                                             | $I (25) + \bigcup_{Br}^{O} (15)$                                                                                                                                                 |              | 226              |
| Br    |                            | MCPBA, NaHCO <sub>3</sub> , CHCl <sub>3</sub> ,<br>24 h                              | $Br \rightarrow H \rightarrow O + Br \rightarrow H \rightarrow $ |              | 226              |
|       |                            | PAA, AcOH, 45 h                                                                      | (16) (60)<br>II                                                                                                                                                                  | (34)         | 226, 960         |
|       |                            | 30% H <sub>2</sub> O <sub>2</sub> , AcOH-H <sub>2</sub> O,<br>16 h, 0-5°             |                                                                                                                                                                                  | (95)         | 579, 961         |
|       | $\supset$                  | MCPBA, NaHCO3, CHCl3,<br>16 h                                                        |                                                                                                                                                                                  | (91)         | 226, 242.<br>960 |
| Br, H | $\geq$                     | MCPBA, NaHCO <sub>3</sub> , CHCl <sub>3</sub> ,<br>15 h                              |                                                                                                                                                                                  | (93)         | 226              |
| Br    | $\sum_{i=1}^{n}$           | MCPBA, NaHCO <sub>3</sub> , CHCl <sub>3</sub> ,<br>24 h, 25°                         |                                                                                                                                                                                  | (60)         | 226, 960         |
| O H   | Br<br>S···OCH <sub>3</sub> | MCPBA, NaHCO <sub>3</sub> , CHCl <sub>3</sub> ,<br>12 h, 25°                         | O = O H                                                                                                                                                                          | (98)         | 226              |
|       |                            |                                                                                      |                                                                                                                                                                                  |              |                  |

TABLE III. REACTIONS OF FUSED-RING KETONES (Continued)

|                                                              | Reactant | Conditions                                                                                               | Product(s) and Yield(s) (%)                                      |                      | Refs.                  |
|--------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------|------------------------|
| Br HO<br>O H                                                 |          | MCPBA, NaHCO <sub>3</sub> , CHCl <sub>3</sub> ,<br>16 h                                                  | Br HO<br>OCOH                                                    | (65)                 | 226                    |
|                                                              |          | H <sub>2</sub> O <sub>2</sub> , NaOH, 0°                                                                 | 0 - O H                                                          | (100)                | 656, 962,<br>963       |
| o H                                                          |          | H <sub>2</sub> O <sub>2</sub> , NaOH                                                                     | o Co                                                             | (100)                | 656                    |
| H                                                            |          | MCPBA, CHCl <sub>3</sub> , 25°                                                                           | H                                                                | (40–90)              | 663, 664               |
| H-D=0                                                        |          | MCPBA, CHCl <sub>3</sub> , 25°                                                                           | H-JO                                                             | (40–90)              | 663, 664               |
|                                                              |          | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, 2 h, 25°                                                       |                                                                  | (>60)                | 962, 963               |
| c.                                                           |          | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>2 h, 25°                                | $o = \langle \bullet + \circ \rangle$                            | (90)                 | 959                    |
|                                                              |          | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 15-18 h,<br>heat                                                |                                                                  |                      | 964                    |
| (a) $R = CI, R' =$<br>(b) $R = Br, R' =$<br>(c) $R = R' = H$ | H<br>H   |                                                                                                          | (a) $R = CI, R' = H$<br>(b) $R = Br, R' = H$<br>(c) $R = R' = H$ | (61)<br>(59)<br>(60) |                        |
| Ů                                                            |          | MCPBA, H <sub>2</sub> SO <sub>4</sub> /Ac <sub>2</sub> O,<br>CH <sub>2</sub> Cl <sub>2</sub> , 12 d, 25° |                                                                  | (71)                 | 763a, 965,<br>966, 967 |
| 0                                                            |          | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 10 d, 0°                                                        | C O                                                              | (90)                 | 752, 763a,<br>968, 969 |
| 2                                                            |          | MCPBA, CF <sub>3</sub> CO <sub>2</sub> H, CH <sub>2</sub> Cl <sub>2</sub> ,<br>8 h, 0–25°                |                                                                  | (71)                 | 742                    |
|                                                              |          | 30% H <sub>2</sub> O <sub>2</sub> , HClO <sub>4</sub> , 4 d, 20°                                         | OH<br>O(CH <sub>2</sub> ) <sub>2</sub> CO <sub>2</sub> H         | (95)                 | 970                    |
| 0 H                                                          |          | 1. 30% H <sub>2</sub> O <sub>2</sub> , AcOH-H <sub>2</sub> O,<br>1.5 h, -2 to 2°<br>2. 35 h, 5°          | O O H                                                            | (54)                 | 971                    |

TABLE III. REACTIONS OF FUSED-RING KETONES (Continued)

TABLE III. REACTIONS OF FUSED-RING KETONES (Continued)



| Reactant      | Conditions                                                                                                         | Product(s) and Yield(s) (%)                                                             |       | Refs.    |
|---------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------|----------|
|               | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>7 d                                               |                                                                                         | (66)  | 636      |
| O H OH        | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>15 h, 0–5°                                        | $0 = \underbrace{\begin{pmatrix} H & 0 \\ H \\$ | (84)  | 247, 248 |
|               | 30% H <sub>2</sub> O <sub>2</sub> , AcOH–H <sub>2</sub> O,<br>20 h, 4°                                             | $0 = \underbrace{\bigcirc H}_{H} \underbrace{\bigcirc H}_{H}$                           | (75)  | 247, 248 |
|               | 30% H <sub>2</sub> O <sub>2</sub> , AcOH, 16 h,<br>5-10°                                                           | H OCH <sub>3</sub><br>H H<br>H H<br>H                                                   | (>90) | 233      |
| to to         | MCPBA, CHCl <sub>3</sub> , <2 h, 25°                                                                               | $\gamma_{0}^{0}$                                                                        | (75)  | 301      |
|               | 30% H <sub>2</sub> O <sub>2</sub> , AcOH-H <sub>2</sub> O,<br>24 h, 0°                                             |                                                                                         | (90)  | 242      |
| Br H<br>O H   | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>20 h                                              | Br H                                                                                    | (63)  | 226, 960 |
| H = O = 85:15 | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>25°                                               | H O<br>H OCH3                                                                           | (79)  | 198a     |
| H H           | 80% MCPBA, CH <sub>2</sub> Cl <sub>2</sub> ,<br>48 h, 25°                                                          | Ho o                                                                                    | (76)  | 261      |
| o H           | 1. TFPAA (90%), Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 15 min, 0°<br>2. 21 h, 25° | o Co H                                                                                  | (90)  | 962, 963 |
|               | MCPBA, CHCl <sub>3</sub> , 25°                                                                                     | (40-90) + $1000$ + $1000$                                                               |       | 663, 664 |
| H O           | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>7 h, 25°                            |                                                                                         | (55)  | 928      |

|                                                                                                                              | Reactant | Conditions                                                                                                         | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | Refs. |
|------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|
|                                                                                                                              |          | 34% H <sub>2</sub> O <sub>2</sub> , SeO <sub>2</sub> , <i>t</i> -BuOI<br>7 h, 80°                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (70)<br>+(20)* | 679   |
| н                                                                                                                            |          | TFPAA (85%), 10 min                                                                                                | н.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (68)           | 973   |
|                                                                                                                              |          | 34% H <sub>2</sub> O <sub>2</sub> , SeO <sub>2</sub> , <i>t</i> -BuOI<br>7 h, 80°                                  | H, $H_{H} = CO_2H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +(20)*         | 679   |
| 10                                                                                                                           |          | MCPBA (85%), CF <sub>3</sub> CO <sub>2</sub><br>CH <sub>2</sub> Cl <sub>2</sub> , 6 h, 0-25°                       | I II<br>(50) (30)<br>H, I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (96)           | 742   |
|                                                                                                                              |          | 1. TFPAA, NaH <sub>2</sub> PO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 6 h, $0^{\circ}$<br>2. 12 h, 25° | $ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} + \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (—)            | 318   |
|                                                                                                                              |          | 1-BuO2H, KOH, 80°                                                                                                  | $(5) \qquad (1) $ | (—)            | 532   |
|                                                                                                                              |          | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 15-18 h,<br>heat                                                          | $R^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 964            |       |
| a) $\mathbf{R} = \mathbf{CH}_3$ , $\mathbf{R}' = \mathbf{H}_3$<br>b) $\mathbf{R} = \mathbf{H}_1 \mathbf{R}' = \mathbf{CH}_3$ |          |                                                                                                                    | (a) $R = CH_3$ , $R' = H$<br>(b) $R = H$ , $R' = CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (62)<br>(60)   |       |
|                                                                                                                              |          | MCPBA, H <sub>2</sub> SO <sub>4</sub> -Ac <sub>2</sub> O,<br>CH <sub>2</sub> Cl <sub>2</sub> , 14 d, 25°           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (71) 965       |       |
| CH30                                                                                                                         |          | MCPBA, H <sub>2</sub> SO <sub>4</sub> -Ac <sub>2</sub> O,<br>CH <sub>2</sub> Cl <sub>2</sub> , 10 d, 25°           | CH30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (80) 965       |       |
| H H                                                                                                                          |          | 30% H <sub>2</sub> O <sub>2</sub> , AcOH-H <sub>2</sub> O, 0°                                                      | o o H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (65) 225       |       |
| A                                                                                                                            |          | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 24 h, heat                                                                | $A_{0} + A_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (74) 260       |       |
|                                                                                                                              |          | 30% H <sub>2</sub> O <sub>2</sub> , AcOH, 2 h, 50°                                                                 | I II<br>I:II = 75:25<br>I:II = 100:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (87) 222,      | 974   |

TABLE III. REACTIONS OF FUSED-RING KETONES (Continued)

-

| Reactant                                                        | Conditions                                                                  | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | Refs.    |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|
| A.                                                              | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, CH <sub>3</sub> OH,<br>2.5 h, 25° | Ago + Ago                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (76)    | 243, 244 |
| $\begin{array}{c} i-C_3H_7 & H \\ B_7 & & \\ O & H \end{array}$ | PAA, AcOH, 120 h                                                            | I:II = 46:54 $I:II = 46:54$ $I:II$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 226, 960 |
|                                                                 | MCPBA, NaHCO3, CH2Cl2,<br>12 h, 25°                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (70)    | 238      |
| - Pro                                                           | 30% H <sub>2</sub> O <sub>2</sub> , AcOH, 25°                               | F°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (35–80) | 663, 664 |
| A.                                                              | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, CH <sub>3</sub> OH,<br>25°        | $\int_{0}^{1} = 0 + \int_{0}^{1} \int_{0}^{1$ | (—)     | 243, 244 |
| Cl(CH <sub>2</sub> ) <sub>2</sub> H<br>Br                       | MCPBA, NaHCO <sub>3</sub> , CHCl <sub>3</sub> ,<br>12 h, 25°                | Cl(CH <sub>2</sub> ) <sub>2</sub> H<br>Br M<br>O<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (70)    | 238      |
| $CI H \\ CI H \\ O H \\ Si(CH_3)_3$                             | 30% H <sub>2</sub> O <sub>2</sub> , AcOH, 3 d, 0–5°                         | $CI = H$ $CI = CI$ $O = O$ $H$ $Si(CH_3)_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (82)    | 972, 975 |
|                                                                 | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 72 h, 25°                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (71)    | 298      |
|                                                                 | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 30 min,<br>25°                     | О<br>CH <sub>3</sub> O <sub>2</sub> C(CH <sub>2</sub> ) <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (83)    | 976      |
|                                                                 | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 3.5 h, 25°                         | О, (CH <sub>2</sub> ) <sub>2</sub> OH<br>CH <sub>3</sub> O <sub>2</sub> C(CH <sub>2</sub> ) <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (83)    | 976      |
|                                                                 | 30% H <sub>2</sub> O <sub>2</sub> , AcOH-H <sub>2</sub> O,<br>24 h, 0°      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (77)    | 242      |

TABLE III. REACTIONS OF FUSED-RING KETONES (Continued)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reactant | Conditions                                                                                     | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Refs.    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | MCPBA, CH <sub>2</sub> Cl <sub>2</sub>                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 943      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 20 h, reflux                                          | (98)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 977      |
| H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 5 h, 25°                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 700      |
| C↓ Solution |          | PAA, H2SO4, AcOH, 5 d, 25°                                                                     | $ \begin{array}{c} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ | 667      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 40% PAA, NaOAc, AcOH,<br>5 d, 25°                                                              | (40) (32) (28)<br>I (94)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 667      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 75% MCPBA, CHCl <sub>3</sub> ,<br>2.5 d, 25°                                                   | (74) $H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 267      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | тграа                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 978      |
| H<br>H<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | $C_6H_5SeO_3H$ , Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 2.5 h |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 222      |
| C <sub>2</sub> H <sub>5</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | MCPBA, CHCl <sub>3</sub> , 25°                                                                 | $\begin{array}{c} C_2H_5 \\ \hline \\ (40-90) \\ (40-90) \\ (trace) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 663, 664 |
| O<br>H<br>Si(CH <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3        | H <sub>2</sub> O <sub>2</sub> , NaOH, CH <sub>3</sub> OH,<br>2 h, 25°                          | $ \begin{array}{c} H \\ O \\ O \\ H \end{array} $ $ \begin{array}{c} H \\ Si(CH_3)_3 \end{array} $ (83)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 972      |
| HOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | MCPBA, NaHCO <sub>3</sub> , 12 h, 25°                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 258, 979 |
| O H<br>XOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>15 h, 25°                     | (>87)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 254      |

TABLE III. REACTIONS OF FUSED-RING KETONES (Continued)



| Reactant          | Conditions                                                                                               | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                          |       | Refs.    |
|-------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|
| HX 0              | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>12 h, 25°                               |                                                                                                                                                                                                                                                                                                                                                                                      | (100) | 259      |
| A.                | 30% H <sub>2</sub> O <sub>2</sub> , AcOH, 25°                                                            | I = 88:12 $I = 88:12$ $I = 60$ $I = 10$ |       | 663, 664 |
| SP                | MCPBA, CHCl <sub>3</sub> , 6 d, 25°                                                                      | of                                                                                                                                                                                                                                                                                                                                                                                   | (96)  | 981      |
| CLA.              | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, CH <sub>3</sub> OH,<br>2.5 h, 25°                              |                                                                                                                                                                                                                                                                                                                                                                                      | (—)   | 243, 244 |
| O H H<br>VOH H    | 85% MCPBA, NaHCO <sub>3</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 5 h, 25°                            | I:II = 82:18                                                                                                                                                                                                                                                                                                                                                                         | (91)  | 982      |
|                   | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub>                                              |                                                                                                                                                                                                                                                                                                                                                                                      | (90)  | 983      |
| 20% methyl epimer | 30% H <sub>2</sub> O <sub>2</sub> , AcOH–H <sub>2</sub> O,<br>24 h, 0°                                   |                                                                                                                                                                                                                                                                                                                                                                                      | (87)  | 242      |
|                   | 1. TFPAA, Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 1 h, 0°<br>2. 2 h, 25° | $\begin{array}{c} HO \\ HO \\ HO \\ C_2H_5O_2C \end{array}$                                                                                                                                                                                                                                                                                                                          | (50)  | 85       |
|                   | TFPAA (98%), K <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , >10 min, 0°          |                                                                                                                                                                                                                                                                                                                                                                                      | (71)  | 962      |
| oth               | TFPAA                                                                                                    | orot                                                                                                                                                                                                                                                                                                                                                                                 | (—)   | 978      |
|                   | MCPBA, CH <sub>2</sub> Cl <sub>2</sub>                                                                   | the + the                                                                                                                                                                                                                                                                                                                                                                            | (—)   | 265      |



TABLE III. REACTIONS OF FUSED-RING KETONES (Continued)

| Re                                           | actant Conditions                                                          | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Refs.    |
|----------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| H                                            | H <sub>2</sub> O <sub>2</sub> , AcOH, 24 h, 0°                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 984, 985 |
| H                                            | H <sub>2</sub> O <sub>2</sub> , AcOH, 24 h, 0°                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 984, 985 |
| 0=(-)=0                                      | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>25 d, 25° | $0 = \underbrace{\begin{pmatrix} 0 \\ 1 \\ 12 \end{pmatrix}}_{0} + \underbrace{\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ (20) \end{pmatrix}}_{0} + \underbrace{\begin{pmatrix} 0 \\ 0 \\ 0 \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\ (20) \\$ | 660      |
|                                              |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
|                                              | MCPBA, TsOH, CH <sub>2</sub> Cl <sub>2</sub> ,<br>25 d, 25°                | III IV<br>(26) (11)<br>II (35) + IV (46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 660      |
|                                              | MCPBA, TsOH, benzene,<br>36 h, 25°                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 986      |
| $O = \bigvee_{H} \bigcup_{OCH_3}^{CO_2CH_3}$ | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>20 h, 25° | (31) 	(25) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60) 	(50-60)                                                                                                                                                                                                                                                                                                                                                                                                     | 257      |
| он<br>Ц                                      | MCPBA, CHCl <sub>3</sub> , 12 h, 25°                                       | о <mark>с о н</mark> (70)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 987      |
| о н<br>Ц                                     | MCPBA, CHCl <sub>3</sub> , 12 h, 25°                                       | о н<br>(70)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 987      |
|                                              | 30% H <sub>2</sub> O <sub>2</sub> , AcOH, 25°                              | (35-80)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 663, 664 |

TABLE III. REACTIONS OF FUSED-RING KETONES (Continued)

•

| Reactant                                                                                                          | Conditions                                                                                                                    | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | Refs. |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------|
| $\langle \cdot \rangle$                                                                                           | MCPBA, CHCl <sub>3</sub> , 6 d, 25°                                                                                           | $\int o + \int o $ |               | 981   |
| H<br>H<br>H<br>COCH <sub>3</sub>                                                                                  | 30% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , <i>t</i> -BuOH,<br>24 h, 25°                             | (52) (32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (92)          | 82    |
| COCH <sub>3</sub>                                                                                                 | 30% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , <i>t</i> -BuOH,<br>24 h, 25°                             | CO₂H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (81)          | 81    |
|                                                                                                                   | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>5 h, 25°                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (99)          | 982   |
| to<br>to<br>o                                                                                                     | PBA, CHCl <sub>3</sub> (moist)                                                                                                | y of of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (84)          | 291   |
| X°Jo, of                                                                                                          | MCPBA, CHCl <sub>3</sub> , <2 h, 25°                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (65)          | 301   |
| C <sub>2</sub> H <sub>5</sub> O <sub>2</sub> CN<br>H<br>C <sub>2</sub> H <sub>5</sub> O <sub>2</sub> CN<br>H<br>O | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 2.5 d, 25°                                                                           | $C_{2}H_{5}O_{2}CN$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (>61)         | 232   |
|                                                                                                                   | C <sub>6</sub> H <sub>5</sub> SeO <sub>3</sub> H, Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 2 h | H = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (50)<br>(45)* | 222   |
| H                                                                                                                 | 40% PAA, BF <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>16 h, 6°                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (36)          | 284   |
| V H                                                                                                               | мсрва                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0)           | 254   |
| $ \begin{array}{c} 0 \\ 0 \\ H \end{array} $ $ \begin{array}{c} 0 \\ C_4H_{y-1} \end{array} $                     | мсрва                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (>67)         | 254   |









TABLE III. REACTIONS OF FUSED-RING KETONES (Continued)




528

529

-074





| $\square$       | Reactant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Conditions                                                                                                                           | Product(s) and Yield(s) (%)                                                                                                                    |               | Refs.    |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|
|                 | H<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MCPBA, TsOH, CH <sub>2</sub> Cl <sub>2</sub> ,<br>3.5 h, 25°                                                                         |                                                                                                                                                | (25)          | 888      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PBA, CHCl <sub>3</sub> , 3–7 d, 30°                                                                                                  |                                                                                                                                                | (70–90)       | 268      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PBA, CHCl <sub>3</sub> , 3–7 d, 30°                                                                                                  |                                                                                                                                                | (70–90)       | 268      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PBA, CHCl <sub>3</sub> , 3–7 d, 30°                                                                                                  |                                                                                                                                                | (70–90)       | 268      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PBA, CHCl <sub>3</sub> , 3–7 d, 30°                                                                                                  |                                                                                                                                                | (70–90)       | 268      |
| C <sub>19</sub> | V H O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | РВА                                                                                                                                  |                                                                                                                                                | (61)          | 999      |
|                 | $CH_{3O} \rightarrow CH_{3} \rightarrow CH_{3O} \rightarrow CH_{3} \rightarrow CH_{3O} \rightarrow CH_{3} $ | MCPBA, H2SO4, CH2Cl2,<br>4 d, 0°                                                                                                     | CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>OCH <sub>3</sub> | (13)          | 320      |
|                 | CH <sub>3</sub> O H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C <sub>6</sub> H <sub>5</sub> SeO <sub>3</sub> H, Na <sub>2</sub> HPO <sub>4</sub> ,<br>THF, 24 h                                    | CH <sub>3</sub> O                                                                                                                              | (80)          | 222      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30% H <sub>2</sub> O <sub>2</sub> , C <sub>6</sub> H <sub>5</sub> AsO <sub>3</sub> H <sub>2</sub> ,<br>CHCl <sub>3</sub> , 48 h, 80° |                                                                                                                                                | (80)<br>(20)* | 181, 182 |

TABLE III. REACTIONS OF FUSED-RING KETONES (Continued)



| Conditions                                                                                 | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Refs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>48 h, 25°                 | CH30 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MCPBA, TsOH, CH <sub>2</sub> Cl <sub>2</sub>                                               | $\begin{cases} H \rightarrow 0 \\ H $ | (80)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MCPBA, TsOH, CH <sub>2</sub> Cl <sub>2</sub> ,<br>5 h, 25°                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (85)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <i>t</i> -BuO <sub>2</sub> H, NaOH, THF,<br>30 min, 0°                                     | $O = \bigcup_{\substack{O \\ H}} H (CH_2)_3 OTHP$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (76)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 272, 1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MCPBA, CHCl <sub>3</sub> , 2.5 d, 25°                                                      | $O = \underbrace{\begin{pmatrix} I \\ I $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (85)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 241, 1002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>90 min, 25° | I:II = 58:42<br>I:II = 100:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PBA, CHCl <sub>3</sub> , 3–7 d, 30°                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (high)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PBA, CHCl <sub>3</sub> , 3–7 d, 30°                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (70–90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 30% H <sub>2</sub> O <sub>2</sub> , NaOH, CH <sub>3</sub> OH,<br>4 h, 25°                  | $C_6H_5$ H<br>$C_6H_5$ H<br>O H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (94)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                            | Conditions           MCPBA, NaHCO3, CH2Cl2, 48 h, 25°           MCPBA, TsOH, CH2Cl2           MCPBA, TsOH, CH2Cl2, 5 h, 25°           MCPBA, TsOH, CH2Cl2, 5 h, 25°           MCPBA, CHCl3, 2.5 d, 25°           MCPBA, CHCl3, 2.5 d, 25°           PBA, CHCl3, 3-7 d, 30°           PBA, CHCl3, 3-7 d, 30°           30% H2O2, NaOH, CH3OH, CH3OH, 4 h, 25°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Product(s) and Yield(s) (%)MCPBA, NaHCO, CH2Cl2,<br>48 h, 25" $(+)_{30} - (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4} + (+)_{4$ | ConditionsProduct(s) and Yield(s) (%)MCPBA, NaHCO, CH2CI,<br>48 h, 25° $(H_{20} \cup (+) + (H_{2} \cup (-))) + (H_{20} \cup (-))) $ |

TABLE III. REACTIONS OF FUSED-RING KETONES (Continued)

| Reactant                        | Conditions                                                                                     | Product(s) and Yield(s) (%)                                                |      | Refs.             |
|---------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------|-------------------|
| CH <sub>3</sub> CO <sub>2</sub> | PAA, TsOH, AcOH, 12 h, 10°                                                                     | CH <sub>3</sub> CO <sub>2</sub>                                            | (75) | 1003              |
| CH <sub>3</sub> CO <sub>2</sub> | PAA, TsOH, AcOH, 100 h,<br>10°                                                                 | CH <sub>3</sub> CO <sub>2</sub>                                            | (84) | 715, 1003         |
| CH3CO                           | PBA, CHCl <sub>3</sub> , 7 d, 25°                                                              | CH <sub>3</sub> CO <sub>2</sub>                                            | (68) | 118               |
| CH <sub>3</sub> CO<br>HO        | 3% H <sub>2</sub> O <sub>2</sub> , NaOH<br>(pH 8.2–8.5), 5 h, 12°                              | HO<br>HO                                                                   | (93) | 119               |
| CH <sub>3</sub> CO <sub>2</sub> | PAA, TsOH, AcOH, 10°                                                                           |                                                                            | (0)  | 714, 715,<br>1003 |
| $C_{3}H_{7}-i$                  | TFPAA (90%), Na2HPO4,<br>CH2Cl2, >30 min. 5-7°                                                 | $C_{3}H_{7}-i$                                                             | (73) | 1004              |
|                                 | MCPBA, CHCl <sub>3</sub> , 8 d. 25°                                                            | H CO                                                                       | (75) | 1005              |
| он                              | TFPAA (90%), Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 2 h, heat | O<br>"<br>O CH <sub>2</sub> O <sub>2</sub> CCH <sub>3</sub>                | (51) | 117               |
| J.H.                            | H <sub>2</sub> O <sub>2</sub> , Ac <sub>2</sub> O, H <sub>2</sub> SO <sub>4</sub>              | $+ \underbrace{\begin{pmatrix} 0 \\ H \\ CO_2H \end{pmatrix}}_{H CO_2H} H$ | (—)  | 1006              |
|                                 |                                                                                                | CO <sub>2</sub> H                                                          |      |                   |

TABLE III. REACTIONS OF FUSED-RING KETONES (Continued)

| Reactant                                                                                                | Conditions                                                                 | Product(s) and Yield(s) (%)     |         | Refs.     |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------|---------|-----------|
|                                                                                                         | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>24 h      |                                 | (76)    | 270       |
| С<br>Н<br>Н                                                                                             | t-BuO₂H, NaOH, THF,<br>15 min, 0°                                          | O<br>H<br>H                     | (59)    | 234       |
| $O_2CCH_3$<br>O=<br>H<br>H<br>H                                                                         | PBA, CHCl <sub>3</sub> , 5–7 d, 30°                                        | O <sub>2</sub> CCH <sub>3</sub> | (high)  | 268       |
| $O_2CCH_3$                                                                                              | PBA, CHCl <sub>3</sub> , 5–7 d, 30°                                        |                                 | (70–90) | 268       |
|                                                                                                         | PBA, CHCl <sub>3</sub> , 12 h. 5°                                          |                                 | (62)    | 1007      |
|                                                                                                         | MCPBA, TsOH, CH <sub>2</sub> Cl <sub>2</sub> ,<br>48 h, 25°                |                                 | (47)    | 892       |
| HO                                                                                                      | MCPBA, CHCl <sub>3</sub> , 30 h, 25°                                       | HO O                            | (63)    | 1008      |
| $O_{21} \xrightarrow{H} O_{2}CC_{6}H_{5} \xrightarrow{O_{2}CC_{6}H_{5}} \xrightarrow{O_{2}CC_{6}H_{5}}$ | 1. 30% H <sub>2</sub> O <sub>2</sub> , 70% AcOH,<br>2 h, 0°<br>2. 3 h, 20° | 0 = 0                           | (100)   | 245, 1009 |





TABLE III. REACTIONS OF FUSED-RING KETONES (Continued)

| Reactant                                                              | Conditions                                                                                                                                                                                          | Product(s) and Yield(s) (%)                                                                                                        |               | Refs.    |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|
| CH <sub>3</sub> CO <sub>2</sub> H                                     | [(CH <sub>3</sub> ) <sub>3</sub> Si] <sub>2</sub> O <sub>2</sub> ,<br>(CH <sub>3</sub> ) <sub>3</sub> SiOS(O) <sub>2</sub> CF <sub>3</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 20 h, -25 to -10° |                                                                                                                                    | (70)<br>(19)* | 221      |
| CH <sub>3</sub> CO <sub>2</sub> H                                     | H <sub>2</sub> O <sub>2</sub> , SeO <sub>2</sub> , <i>i</i> -BuOH, 7 h, 25°                                                                                                                         |                                                                                                                                    | (—)           | 370, 515 |
| O<br>O<br>O<br>O<br>H                                                 | 50% H <sub>2</sub> O <sub>2</sub> , SeO <sub>2</sub> , <i>i</i> -BuOH, HO<br>7 h, heat                                                                                                              | $D_2C(CH_2)_2 - H$                                                                                                                 | (clean)       | 101      |
| CH <sub>3</sub> CO <sub>2</sub> H H H O <sub>2</sub> CCH <sub>3</sub> | 40% PAA, TsOH, AcOH, 24 h, 25°                                                                                                                                                                      | H<br>H<br>O <sub>2</sub> CCH <sub>3</sub>                                                                                          | (97)          | 293      |
| CTN C2H5                                                              | 35% H <sub>2</sub> O <sub>2</sub> , DMF, 15 h, 25°                                                                                                                                                  | N N                                                                                                                                | (53)          | 644      |
| BnOCH <sub>2</sub> O<br>O<br>H<br>O                                   | Bn(<br>H <sub>2</sub> O <sub>2</sub> (anh), Ti(OPr- $i$ ) <sub>4</sub> , ether,<br>( $i$ -Pr) <sub>2</sub> NC <sub>2</sub> H <sub>5</sub> , 15 min, -30°                                            | OCH <sub>2</sub> O<br>H<br>H<br>O                                                                                                  | (55)          | 236      |
| CH <sub>3</sub> O <sub>2</sub> C H O                                  | H <sub>2</sub> O <sub>2</sub> , Ac <sub>2</sub> O, H <sub>2</sub> SO <sub>4</sub> , 7 h, 25°<br>CH                                                                                                  | C <sub>3</sub> H <sub>7</sub> - <i>i</i><br>O<br>G<br>G<br>G<br>G<br>G<br>G<br>H<br>C<br>H<br>C<br>H<br>C<br>S<br>H<br>7- <i>i</i> | (—)           | 1015     |
|                                                                       | MCPBA, CHCl <sub>3</sub> , 4 d, 25°<br>CH                                                                                                                                                           | OCH3<br>C3H7-i                                                                                                                     | (—)           | 1015     |



TABLE III. REACTIONS OF FUSED-RING KETONES (Continued)



TABLE III. REACTIONS OF FUSED-RING KETONES (Continued)





TABLE III. REACTIONS OF FUSED-RING KETONES (Continued)





TABLE III. REACTIONS OF FUSED-RING KETONES (Continued)

| PBA, HCIO4, CHCI3,                                                            | $\langle \cdot \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 48 n, 25"                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (53)                                                                                                | 1027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PBA, TsOH, CHCl <sub>3</sub> , 3 d, 25°                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )<br>H                                                                                              | 1026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PBA, TsOH, CHCl <sub>3</sub> ,<br>60 h, 25°                                   | I = (36) $I + II = (23)H + H + H + H + H + H + H + H + H + H +$                                                                                                                                                                                                                                                                                                                                                                                                                 | (58)                                                                                                | 303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MCPBA, TsOH, CH2Cl2,<br>12 h, 25°                                             | H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (83)                                                                                                | 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PBA, TsOH, CHCl <sub>3</sub> , 3 d, 25°                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (43)                                                                                                | 277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PBA, TsOH, CHCl <sub>3</sub> ,<br>48 h, 25°                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (63)                                                                                                | 278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TFPAA, Na2HPO4, CHCl3,<br>1.5 h, 25°                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (29)                                                                                                | 509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 30% H <sub>2</sub> O <sub>2</sub> , NaOH, CH <sub>3</sub> OH,<br>24 h, reflux |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (83)                                                                                                | 297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                               | <ul> <li>PBA, TSOH, CHCl<sub>3</sub>, 3 d, 25°</li> <li>PBA, TSOH, CHCl<sub>3</sub>, 60 h, 25°</li> <li>MCPBA, TSOH, CH<sub>2</sub>Cl<sub>2</sub>, 12 h, 25°</li> <li>PBA, TSOH, CHCl<sub>3</sub>, 3 d, 25°</li> <li>PBA, TSOH, CHCl<sub>3</sub>, 3 d, 25°</li> <li>PBA, TSOH, CHCl<sub>3</sub>, 48 h, 25°</li> <li>TFPAA, Na<sub>2</sub>HPO<sub>4</sub>, CHCl<sub>3</sub>, 1.5 h, 25°</li> <li>30% H<sub>2</sub>O<sub>2</sub>, NaOH, CH<sub>3</sub>OH, 24 h, reflux</li> </ul> | PBA, TSOH, CHCl <sub>3</sub> , 3 d, 25°<br>$ \begin{array}{c}                                     $ | $H^{-}$ $PBA, TSOH, CHCl_{3}, 3 d, 25^{\circ}$ $f = \begin{pmatrix} 0 & f & H \\ f & H \\ f & f \\$ |

TABLE III. REACTIONS OF FUSED-RING KETONES (Continued)



| Reactant       | Conditions                                  | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Refs.                    |
|----------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|                | PBA, TsOH, CHCl <sub>3</sub> , 7 d, 25°     | $B_{I} \xrightarrow{H} H \xrightarrow{H} \xrightarrow{H}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (31)* 277, 306,<br>H 307 |
| H<br>H<br>Br O | PBA, TsOH, CHCl3, 4 d, 25°                  | (9) $(H)$ | (6)* 287                 |
|                |                                             | $+ \underbrace{H}_{Br} \underbrace{H}_{O} \underbrace{H}_{O}$ (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |
|                | TFPAA, Na2HPO4, CHCl3,<br>80 min, 30-40°    | $CI.$ $O = \bigcup_{H} H$ $H$ $H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (—) 266                  |
|                | PBA, TsOH, CHCl <sub>3</sub> , 7 d, 25°     | $CI \leftarrow H + H + CI \leftarrow H + H + CI \leftarrow H + H + CI \leftarrow H + H + H + CI \leftarrow H + H + H + H + H + H + H + H + H + H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |
|                | PBA, TsOH, CHCl <sub>3</sub> ,<br>96 h, 25° | CI HHHHHHHHHHHHHHHHHH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (4) 277                  |
|                |                                             | + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (19)                     |
|                | TFPAA, Na2HPO4, CHCl3,<br>2 h, reflux       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (41) 266                 |

567



| Reactant | Conditions                                                                                                     | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ref                                        | fs. |
|----------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----|
|          | MCPBA, TsOH, CH <sub>2</sub> Cl <sub>2</sub> ,<br>5 h, 25°                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (63) 275, 1                                | 034 |
|          | 1. TFPAA (90%), Na <sub>2</sub> HPO <sub>4</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 1 h, 0°<br>2. 2 h, 20° |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (—) 1035                                   |     |
|          | PBA, TsOH, CHCl <sub>3</sub> , 7 d, 25°                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +(15)* 306, 3                              | 09  |
| 9        | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>1 h, 20°                        | I II<br>(37) (12)<br>I:II = 92:8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (100) 273                                  |     |
|          | MCPBA, TsOH, CH <sub>2</sub> Cl <sub>2</sub>                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (89) 275                                   |     |
|          | TFPAA, Na2HPO4, CH2Cl2,<br>1 h, 20°                                                                            | HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO | <ul> <li>√ (100) 273</li> <li>H</li> </ul> |     |
|          | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>1 h, 20°                        | HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO | (100) 273<br>H                             |     |











| T/ | DI         | E II  | T D  | TACTIONS. | OF  | Lucro  | Ding | VETONEC | in | antimu | A    |
|----|------------|-------|------|-----------|-----|--------|------|---------|----|--------|------|
| 12 | <b>VDL</b> | -C 11 | I. D | PAULIUNS. | Ur. | FUSED- | NINU | DEIUNES |    | onuna  | cu 1 |



| Reactant                                                                                                                    | Conditions                                                                                                                     | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | Refs.           |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|
|                                                                                                                             | PBA, CHCl <sub>3</sub> , 107 h, 25°<br>TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>1 h, 20° | I:II = 24:76<br>I:II = 28:72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (85)<br>(100)     | 309, 310<br>273 |
|                                                                                                                             | TFPAA, Na2HPO4, CH2Cl2,<br>1 h, 20°                                                                                            | $CH_{3}CO_{2} + H + CH_{3}CO_{2} + H + CH_{3}CO_{2$ |                   | 273             |
| CH <sub>3</sub> CO <sub>2</sub> <sup>H</sup> O                                                                              | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>1 h, 20°                                        | $(H_{3}CO_{2}H) = 25.75$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H<br>H<br>(100)   | 273             |
| CH <sub>3</sub> CO <sub>2</sub> HO O                                                                                        | PBA, TsOH, CHCl <sub>3</sub> ,<br>40 h, 25°                                                                                    | $CH_{3}CO_{2} \xrightarrow{HO} O_{(19)} \xrightarrow{H} HO O_{(11)} \xrightarrow{HO} O_{(11)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H<br>H<br>CH2CO2H | 288             |
| $ \begin{array}{c} H \\ O \\ O \\ H \\ TBDMSO \end{array} $ (CH <sub>2</sub> ) <sub>3</sub> CO <sub>2</sub> CH <sub>3</sub> | 30% H <sub>2</sub> O <sub>2</sub> , AcOH, 0°                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (90)              | 1042            |
| $H = (CH_2)_3CO_2CH_3$ $H = C_5H_{11}-n$ TBDMSO                                                                             | 30% H <sub>2</sub> O <sub>2</sub> , AcOH, 0°                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (90)              | 1042            |
|                                                                                                                             | MCPBA, H <sub>2</sub> SO <sub>4</sub> , AcOH,<br>CH <sub>2</sub> Cl <sub>2</sub> , 90 h, 25°                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (65)              | 669, 670        |
|                                                                                                                             | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> -CHCl <sub>3</sub> ,<br>24 h, 25°                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (97)              | 669, 1040       |
|                                                                                                                             | 40% PAA, BF3 etherate,<br>CH2Cl2, 16 h, 6°                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (33)              | 284, 285        |









TABLE III. REACTIONS OF FUSED-RING KETONES (Continued)








TABLE III. REACTIONS OF FUSED-RING KETONES (Continued)







TABLE III. REACTIONS OF FUSED-RING KETONES (Continued)



TABLE III. REACTIONS OF FUSED-RING KETONES (Continued)

|    | Reactant   | Conditions                                                              | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | Refs.    |
|----|------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|
| c. | ⊭0         | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 2 h, 25°  | d'e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (74)  | 384      |
| A  | h          | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, ether, 40 min, 10-25°         | HOCH2CO2H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (70)  | 412      |
|    |            | 1. 30% $H_2O_2$ , NaOH, ether<br>2. $CH_2N_2$ , ether                   | HO CH <sub>2</sub> CO <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (41)  | 408      |
|    |            | 40% PAA, NaOAc, CHCl <sub>3</sub> , 1 h, <0°                            | H C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (—)   | 376      |
|    |            | 1. $H_2O_2$ , NaOH, ether, $H_2O_2$ . $C_4H_9I$ , HMPA                  | H<br>HO<br>CH <sub>2</sub> CO <sub>2</sub> C <sub>4</sub> H <sub>9</sub> -n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (>70) | 389      |
|    | 7          | раа                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (56)  | 1068     |
| B  | r<br>==0   | 40% PAA, AcOH, NaOAc, 15 d, 25°                                         | $\int_{1}^{Br} + \int_{0}^{Br} + \int_{$ | (73)  | 361, 369 |
| Br | <b>=</b> 0 | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 48 h, 25° | $\frac{Br}{O}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (71)  | 369      |
| A  | I<br>≠=0   | 40% PAA, AcOH, NaOAc, 14 d, 25°                                         | $\int_{I}^{CI} + \int_{II}^{CI} + \int$                                  | (77)  | 361, 369 |
| a  | <b>=</b> 0 | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 48 h, 25° | I:II = 47:53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (76)  | 369      |
| Br | Lo         | МСРВА                                                                   | Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (92)  | 1069     |
| Å  | EO         | MCPBA, NaHCO <sub>3</sub> , CHCl <sub>3</sub> , 8 h                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (86)  | 382      |

TABLE IV. REACTIONS OF BRIDGED BICYCLIC AND POLYCYCLIC KETONES

|                         | Conditions                                                                                                                                                                                                                           | Product(s) and Yield(s) (%)                                                                       |                           | Refs.                                      |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------|
| de la                   | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 5 h, 25°                                                                                                                                                               | $A_{0}^{+}$                                                                                       | (86)                      | 321, 335,<br>362                           |
|                         | 40% PAA, H <sub>2</sub> SO <sub>4</sub> , AcOH, 5 d, 27°<br>Na <sub>2</sub> CO <sub>4</sub> , CF <sub>3</sub> CO <sub>2</sub> H, 0°, 1.5 h<br>TFPAA (85%), Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 10 h | I:II = 92:8<br>I:II = 75:25<br>I:II = 86:14<br>I                                                  | (97)<br>(90)<br>(100)     | 362, 371<br>763a<br>322, 323,<br>371, 1070 |
|                         | CAN, CH <sub>3</sub> CN-H <sub>2</sub> O, 3 h, 60°                                                                                                                                                                                   | $O_2NO' CH_2CO_2H + O_2NO' CH_2'$                                                                 | CO <sub>2</sub> H<br>(45) | 686                                        |
| Å                       | MCPBA, NaHCO3, CHCl3, 112 h, 12°                                                                                                                                                                                                     | 1:II = 60:40                                                                                      | (94)                      | 383                                        |
| 0 A                     | 30% H <sub>2</sub> O <sub>2</sub> , C <sub>2</sub> H <sub>5</sub> OH, 1–14 d                                                                                                                                                         |                                                                                                   | (72)                      | 73                                         |
| NC<br>Br                | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 9 h, 25°                                                                                                                                                               | NC<br>H<br>Br $Br$ $Br$ $Br$                                                                      |                           | 349                                        |
| HO <sub>2</sub> C       | 40% PAA, AcOH, 12 h                                                                                                                                                                                                                  | $\begin{array}{ccc} (50) & (10) \\ HO_2C & HO_2C \\ \hline O & + & O \\ I & I & I \\ \end{array}$ | (—)                       | 340                                        |
|                         |                                                                                                                                                                                                                                      | I:II = 88:12<br>I:II = 100:0                                                                      | (51)                      | 343                                        |
| ° °                     | MCPBA, NaHCO3                                                                                                                                                                                                                        |                                                                                                   | (75)                      | 1071                                       |
| HO <sub>2</sub> C<br>Br | PAA, NaOAc, AcOH, 12 h, 25°                                                                                                                                                                                                          | HO <sub>2</sub> C<br>Br 0 1                                                                       | (71)                      | 343                                        |
|                         | PA A /AcOH                                                                                                                                                                                                                           |                                                                                                   | (91)                      | 340                                        |

TABLE IV. REACTIONS OF BRIDGED BICYCLIC AND POLYCYCLIC KETONES (Continued)

| Reactant          | Conditions                                                                                    | Product(s) and Yield(s) (%)                               |      | Refs.     |
|-------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------|------|-----------|
|                   | 1. PAA, AcOH, H₂SO₄<br>2. NaOH                                                                | HO. CO <sub>2</sub> H                                     | (—)  | 340       |
| HO <sub>2</sub> C | PAA, NaOAc, AcOH, 12 h, 25°                                                                   | HO <sub>2</sub> C<br>Cl                                   | (74) | 343, 1071 |
| HO <sub>2</sub> C | 1. PAA<br>2. CH <sub>2</sub> N <sub>2</sub>                                                   | CO <sub>2</sub> CH <sub>3</sub>                           | (—)  | 344       |
| E.                | 1. $H_2O_2$ , NaOH<br>2. BF <sub>3</sub> etherate, $CH_2Cl_2$                                 | H O O                                                     | (70) | 1072      |
| al po             | 28% PAA, NaOAc, AcOH, 3 d, 25°                                                                |                                                           | (80) | 371       |
| V Po              | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 2 d, 25°                        | V Loo                                                     | (80) | 422       |
| ( ) o             | MCPBA, NaHCO3, CH2CI2, 2 d, 25°                                                               | 4 + 4 + 4 = 80020                                         | (83) | 422       |
| °                 | TFPAA (90%), Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> CL <sub>2</sub> ,<br>6 h, 25° |                                                           | (98) | 374       |
| Å_o               | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 24 h, 25°                                            | el o                                                      | (86) | 444       |
| CO <sub>2</sub> H | MCPBA (solid state) or PAA                                                                    |                                                           | (83) | 371a      |
| de po             | 40% PAA, $H_2SO_4$ , AcOH, 2 h, 25°                                                           |                                                           | (42) | 362       |
|                   | 30% $H_2O_2$ , Nafion, $CH_2Cl_2$ , 12 h, heat                                                | $I + \underbrace{\bigcirc}_{I : II = 90 \cdot 10}^{O} II$ | (94) | 323       |
| d'e               | PNPBA, CH <sub>2</sub> Cl <sub>2</sub>                                                        | (35) + (35) + (35)                                        |      | 360       |
|                   |                                                                                               |                                                           |      |           |

TABLE IV. REACTIONS OF BRIDGED BICYCLIC AND POLYCYCLIC KETONES (Continued)

| $ \begin{array}{cccc} & & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$                                                                                                                                                                                                                                                     | <ul> <li>) 371, 420</li> <li>) 656</li> <li>) 444, 445</li> <li>) 431</li> <li>) 371b</li> </ul> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| $ \begin{array}{cccc} & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) 656<br>) 444, 445<br>) 431<br>) 371b                                                           |
| $\begin{array}{ccc} & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) 444, 445<br>) 431<br>) 371b                                                                    |
| $\begin{array}{c} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) 431<br>) 3716                                                                                  |
| Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) 3716                                                                                           |
| $ \begin{array}{c} \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $                                                       |                                                                                                  |
| $MCPBA, NaHCO_3, CH_2Cl_2 \qquad O = O \qquad (quant$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ) 442                                                                                            |
| $\begin{array}{c} OCH_{3} \\ OCH_{3} \\ OCH_{3} \\ OCH_{3} \\ OCH_{3} \\ I + OCH_{3} \\ OCH_{3} \\ I + OCH_{3} \\ OCH_{3} \\ I + OCH_{3} \\ I = 45:55 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) 369                                                                                            |
| $\begin{array}{c} CH_{3}O\\ \hline \end{array} \\ 0 \end{array} \qquad MCPBA, NaHCO_{3}, CH_{2}Cl_{2}, 48 h, 25^{\circ} \end{array} \qquad \begin{array}{c} CH_{3}O\\ \hline \end{array} \\ 0 \end{array} \qquad (79)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 369                                                                                              |
| HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>0 = 0 (95)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 329                                                                                              |
| $C_{9}$ $O = Br$ $CAN, CH_{3}CN-H_{2}O, 30 min, 0-5^{\circ}$ $Br = O$ $H$ $O$ $H$ $O$ $H$ $O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) 687                                                                                            |
| CAN, CH <sub>3</sub> CN-H <sub>2</sub> O, 30 min, 0-5° $H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 687                                                                                              |
| $H_{C \leq C}$ $H_{C$ | ) 352                                                                                            |
| $\begin{array}{c} Cl \\ Cl \\ Br \end{array} = \begin{array}{c} 0 \\ Br \end{array} \qquad 70\% \text{ MCPBA, } CH_2Cl_2, 24 \text{ h}, 25^\circ \qquad \begin{array}{c} Cl \\ Cl \\ Br \end{array} \qquad \begin{array}{c} Cl \\ O \\ Br \end{array} \qquad \begin{array}{c} 0 \\ Br \end{array} \qquad (89)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ) 353                                                                                            |

TABLE IV. REACTIONS OF BRIDGED BICYCLIC AND POLYCYCLIC KETONES (Continued)

| Rea                                    | actant Conditions                                                                                                                | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | Refs.    |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|
| NC<br>OCH3                             |                                                                                                                                  | no reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 349      |
| CH <sub>3</sub> O <sub>2</sub> C       | о мсрва                                                                                                                          | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$ | (—)   | 343, 344 |
| CH <sub>3</sub> O <sub>2</sub> C       | D MCPBA, CH <sub>2</sub> Cl <sub>2</sub>                                                                                         | CH <sub>3</sub> O <sub>2</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (100) | 343      |
| CH <sub>3</sub> O <sub>2</sub> C       | MCPBA, NaHCO3, CH2Cl2, 48 h, 25°                                                                                                 | CH302C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (90)  | 375      |
| CH <sub>3</sub> O                      | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 3 h, 25°                                                           | CH <sub>3</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (65)  | 349      |
| CH <sub>3</sub> O <sub>2</sub> C<br>Br | O MCPBA, CH <sub>2</sub> Cl <sub>2</sub>                                                                                         | CH <sub>3</sub> O <sub>2</sub> C<br>Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (70)  | 343      |
| CH <sub>3</sub> O <sub>2</sub> C       | O MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 7 h, 0–20°                                                                            | CH <sub>3</sub> O <sub>2</sub> C<br>Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (76)  | 346      |
| CH <sub>3</sub> O <sub>2</sub> C       | 40% PAA, NaOAc, CH <sub>3</sub> CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> ,<br>35 h, 25°                                     | $CH_{3}O_{2}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (81)  | 343, 344 |
|                                        | <ol> <li>40% PAA, NaOAc, CH<sub>3</sub>CO<sub>2</sub>C<sub>2</sub>H<sub>5</sub>,<br/>35 h, 25°</li> <li>TsOH, benzene</li> </ol> | I II<br>major trace<br>I:II = 0:100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (81)  | 344      |
| Pro                                    | 1. MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 23 h, 5<br>2. BF <sub>3</sub> etherate                          | $^{\circ}$ $\rightarrow$ $\rightarrow$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (84)  | 416      |
| E                                      | MCPBA, NaHCO3, CH2Cl2, 5 d, 25°                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (97)  | 422      |
| V-J-o                                  | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 2 d, 25°                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (62)  | 422      |
| 0                                      | TFPAA, Na2HPO4                                                                                                                   | 0-0-0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (80)  | 473      |

TABLE IV. REACTIONS OF BRIDGED BICYCLIC AND POLYCYCLIC KETONES (Continued)

| Reactant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Conditions                                                                                                                                                                                              | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | Refs.    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|
| A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>1.25 h, 0°-heat                                                                                                          | $ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $ | (84) | 437      |
| CH3OCH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MCPBA, NaHCO3, CH2Cl2                                                                                                                                                                                   | $1:II = 55:45$ $CH_{3}OCH_{2}$ $OH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (95) | 392      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, 40 min, 10-25°                                                                                                                                                | CH2OCH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (99) | 390      |
| DOCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ol> <li>40% PAA (1 eq), NaOAc, AcOH,<br/>3 h, 50°</li> <li>40% PAA (1 eq), 72 h, 25°</li> <li>K<sub>2</sub>CO<sub>3</sub>, (CH<sub>3</sub>)<sub>2</sub>SO<sub>4</sub>, acetone, 3 h, reflux</li> </ol> | CH <sub>2</sub> CO <sub>2</sub> H<br>CH <sub>2</sub> CO <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (85) | 423, 753 |
| 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 12 h, 25°                                                                                                                                                      | 0-1-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (79) | 466, 469 |
| °<br>Contraction of the second se | MCPBA, 16 h, 25°                                                                                                                                                                                        | ofo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (89) | 444      |
| CO <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 48 h, 25°                                                                                                                                 | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (78) | 369      |
| CH <sub>3</sub> O <sub>2</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 48 h, 25°                                                                                                                                 | $1:11 = 95:5$ $CH_3O_2C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (78) | 359, 369 |
| CO <sub>2</sub> CH <sub>3</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | РАА, АсОН                                                                                                                                                                                               | CO <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (—)  | 358      |
| O <sub>2</sub> CCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 48 h, 25°                                                                                                                                 | $ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $                                                                                         | (80) | 369      |
| CH <sub>3</sub> CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 48 h, 25°                                                                                                                                 | I:II = 60:40<br>CH <sub>3</sub> CO <sub>2</sub><br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (80) | 369      |
| to fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 3 d, 25°                                                                                                                                                       | to fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (87) | 387      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |          |

TABLE IV. REACTIONS OF BRIDGED BICYCLIC AND POLYCYCLIC KETONES (Continued)

| Reactant                         | Conditions                                                                                                                                                         | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | Refs.    |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|
| CO <sub>2</sub> H                | 1. 80% H <sub>2</sub> O <sub>2</sub> , 40% NaOH, 7 d, 18°<br>2. CH <sub>2</sub> N <sub>2</sub>                                                                     | OH<br>CO <sub>2</sub> CH <sub>3</sub><br>CH <sub>2</sub> CO <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (34)          | 356      |
| CH <sub>3</sub> CO <sub>2</sub>  | TFPAA, CH <sub>2</sub> Cl <sub>2</sub> , 12 h, 15°                                                                                                                 | $CH_3CO_2$ $O$ $+$ $CH_3CO_2$ | ¥0            | 38, 39   |
|                                  | MCPBA, CHCl <sub>3</sub> , <2 h, 25°                                                                                                                               | I II II = $46:54$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (78)<br>(45)  | 301      |
|                                  | MCPBA, CHCl3, <2 h, 25°                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (74)          | 301      |
| NCO <sub>2</sub> CH <sub>3</sub> | MCPBA, CICH <sub>2</sub> CH <sub>2</sub> Cl, 65°, 24 h,<br>2,6-(t-C <sub>4</sub> H <sub>9</sub> ) <sub>2</sub> -4-CH <sub>3</sub> C <sub>6</sub> H <sub>2</sub> OH | NCO <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (24)<br>(76)* | 1073     |
| Aro                              | 1. MCPBA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 6 h, 0°<br>2. 18 h, 25°                                                             | A o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (84)          | 354      |
| I.J.o                            | K <sub>2</sub> SO <sub>5</sub> , H <sub>2</sub> SO <sub>4</sub> , ligroin                                                                                          | X.º                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (18)          | 367      |
| A                                | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , heat                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0)           | 444, 466 |
| A                                | МСРВА, CH <sub>2</sub> Cl <sub>2</sub> , 3 h, 25°                                                                                                                  | doz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (83)          | 444      |
| 0                                | TFPAA (73%), CH2Cl2, 6 h, reflux                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (28)          | 464      |
| Å                                | 40% PAA, NaOAc, AcOH, 65 h, 25°                                                                                                                                    | Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (82)          | 471      |
| CH <sub>2</sub> OH               | MCPBA, CH <sub>2</sub> Cl <sub>2</sub>                                                                                                                             | HO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (—)           | 355      |
| Å                                | <ol> <li>TFPAA (90%), Na<sub>2</sub>HPO<sub>4</sub>, CH<sub>2</sub>Cl<sub>2</sub>,<br/>2 h, 25°</li> <li>15 min, heat</li> </ol>                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (94)          | 447      |

TABLE IV. REACTIONS OF BRIDGED BICYCLIC AND POLYCYCLIC KETONES (Continued)

|      | Reactant                                          | Conditions                                                                                   | Product(s) and Yield(s) (%)                                            |                | Refs.    |
|------|---------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------|----------|
| C 10 | A.                                                | MCPBA, CHCl <sub>3</sub> , 1 h, 25°                                                          | $f_{D}$ + $D$ $f_{O}$ + $D$ $f_{O}$ (16)                               |                | 377      |
|      | E.                                                | MCPBA, CHCl <sub>3</sub> , 1 h, 25°                                                          |                                                                        |                | 377, 380 |
|      |                                                   | Pb(OAc) <sub>4</sub> , AcOH, 3 h, heat                                                       | I II III<br>(50) (13) (1)<br>II                                        | (55)<br>+(21)* | 377      |
|      |                                                   | 85% MCPBA, benzene, 15 min, 25°                                                              | I + II<br>(56) (12)                                                    |                | 377, 378 |
|      |                                                   | MCPBA, dioxane-H <sub>2</sub> O, 1 h, 25°                                                    | 1 + 11<br>(46) (31)                                                    |                | 377, 380 |
|      |                                                   | CAN, $CH_3CN-H_2O$ , 1 h, 60°                                                                | П                                                                      | (78)           | 378      |
|      |                                                   | 30% H <sub>2</sub> O <sub>2</sub> , Nafion-H, CH <sub>2</sub> Cl <sub>2</sub> , 1 h, reflux  | 11 + 111 = 50.50                                                       | (90)           | 323, 974 |
|      | EL.                                               | MCBPA, TsOH, benzene, 2 h, 25°                                                               | Ro                                                                     | (86)           | 378, 974 |
|      | CCI <sub>3</sub> CH <sub>2</sub> O <sub>2</sub> C | 40% PAA, NaOAc, CH <sub>3</sub> CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> ,<br>12 h, 25° | CCI <sub>3</sub> CH <sub>2</sub> O <sub>2</sub> C                      | (100)          | 343      |
|      | CCl <sub>3</sub> CH <sub>2</sub> O                | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, 40 min, 10-25°                                     | CH <sub>2</sub> CO <sub>2</sub> H<br>OCH <sub>2</sub> CCI <sub>3</sub> | >95)           | 390, 394 |
|      | The second                                        | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, CH <sub>3</sub> OH-H <sub>2</sub> O, 12 h, 0°      | CH <sub>2</sub> CO <sub>2</sub> H                                      | (85)           | 393      |
|      |                                                   | МСРВА, СНСІ <sub>3</sub> , 9 h, 25°                                                          |                                                                        |                | 377      |
|      | NCO <sub>2</sub> CH <sub>2</sub> CCl <sub>3</sub> | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 48 h, 25°                      | $0 = 1$ $NCO_2CH_2CCl_3 + 0$ $NCO_2CH_2CCl_3 + 0$                      | I2CCI3         | 424      |
|      |                                                   |                                                                                              | I II<br>1:II = 70:30                                                   | (83)           |          |
|      |                                                   | PAA, NaOAc, AcOH, 24 h, 25°                                                                  | 1:11 = 100:0                                                           | (76)           | 424      |

| TABLE IV. REACTIONS OF DRIDGED DICTCLIC AND FOLICICLIC RETONES (CONTINU | TABLE IV. | REACTIONS OF BRIDGED | BICYCLIC AND POLYCYCLIC | KETONES ( | (Continue |
|-------------------------------------------------------------------------|-----------|----------------------|-------------------------|-----------|-----------|
|-------------------------------------------------------------------------|-----------|----------------------|-------------------------|-----------|-----------|

| Reactant                               | Conditions                                                                    | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | Ref  |
|----------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|
| CH <sub>3</sub> O <sub>2</sub> C<br>Br | H <sub>2</sub> O <sub>2</sub> , NaOH                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0)           | 396  |
| Br H O                                 | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 12 h, 20°                            | Br + O + Br + O O<br>H O H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (75)          | 476  |
| H R O                                  | PAA, AcOH, 12 h, 60°                                                          | H = 95:5 $H = 0$ $H$ | (50)<br>(45)* | 476  |
|                                        | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 12 h, 20°                            | I:II = 80:20 $CI + CI + CI + OOO$ $I + II = II$ $II = III = III$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (81)          | 476  |
| H Q                                    | PAA, AcOH, 14 h, 60°                                                          | H = 94:8 $H = 94:8$                                                                                                                                                            | (67)<br>(32)* | 476  |
|                                        | SeO <sub>2</sub> , H <sub>2</sub> O <sub>2</sub> , t-BuOH, 100 h, 20°         | I = H = H = H = H = H = H = H = H = H =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (69)          | 476  |
| нД                                     | SeO <sub>2</sub> , H <sub>2</sub> O <sub>2</sub> , <i>t</i> -BuOH, 100 h, 20° | I:II = 29:71 $H + H + O = 0$ $I = II$ $I = II$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (36)<br>(56)* | 476  |
| Å.                                     | PAA                                                                           | I:II = 45:55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (—)           | 1074 |
| - Do                                   | MPPA, CHCl <sub>3</sub> , 10–12 h, 25°                                        | (I + II):III = 80:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (89)          | 468  |
| - A-0                                  | MPPA, CHCl <sub>3</sub> , 3 h, 25°                                            | OH<br>A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (82)          | 467  |

| Reactant                            | Conditions                                                                                                                                                                                                                                                             | Product(s) and Yield(s) (%)                                                   |       | Refs.                                       |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------|---------------------------------------------|
| A PO                                | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 12 h, reflux                                                                                                                                                                                                                  | A o                                                                           | (100) | 323                                         |
| EF-0                                | PBA, benzene, 5 d, 25°                                                                                                                                                                                                                                                 | Eleo.                                                                         | (78)  | 364                                         |
|                                     | PBA, TsOH, benzene, 4 d, 25°                                                                                                                                                                                                                                           | 0 0 0 H                                                                       | (60)  | 364                                         |
| R                                   | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 12 h, reflux                                                                                                                                                                                                                  | R.                                                                            | (100) | 47, 323,<br>686, 763a,<br>974,<br>1075–1079 |
| Å                                   | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 3 d, 25°                                                                                                                                                                                                                      | $\int_{I}^{O} + \int_{I}^{O} + \int_{I}^{O}$ $I = 35:65$                      | (93)  | 478                                         |
| D.OCH3                              | 1. 40% PAA (1 eq), NaOAc, AcOH,<br>3 h, 50°<br>2. 40% PAA (1 eq), 96 h, 25°                                                                                                                                                                                            | H<br>CH <sub>2</sub> CO <sub>2</sub> CH <sub>3</sub>                          | (59)  | 423, 753                                    |
| C.OCH3                              | <ol> <li>10% NaOH, (CH<sub>3</sub>)<sub>2</sub>SO, 2 h, 25</li> <li>40% PAA (1 eq), NaOAc, AcOH,<br/>3 h, 50°</li> <li>40% PAA (1 eq), 48 h, 25°</li> <li>K<sub>2</sub>CO<sub>3</sub>, (CH<sub>3</sub>)<sub>2</sub>SO<sub>4</sub>, acetone,<br/>1 h, reflux</li> </ol> | OCH2CO2CH3                                                                    | (80)  | 423, 753                                    |
|                                     | 1. 40% PAA (1 eq), NaOAc, AcOH,<br>4 h, 50°<br>2. 40% PAA (1 eq), 48 h, 25°                                                                                                                                                                                            |                                                                               | (56)  | 423, 753                                    |
| °<br>Goo                            | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 24 h, 25°                                                                                                                                                                                                                     | of o                                                                          | (85)  | 444                                         |
| CO <sub>2</sub> CH <sub>3</sub>     | PAA, AcOH                                                                                                                                                                                                                                                              | CO <sub>2</sub> CH <sub>3</sub>                                               | (97)  | 358                                         |
| (CH <sub>3</sub> O) <sub>2</sub> CH | 29% H <sub>2</sub> O <sub>2</sub> , NaOH, toluene, 4 h, 0°                                                                                                                                                                                                             | CH <sub>2</sub> CO <sub>2</sub> H<br>CH(OCH <sub>3</sub> ) <sub>2</sub><br>OH | (>54) | 410                                         |

TABLE IV. REACTIONS OF BRIDGED BICYCLIC AND POLYCYCLIC KETONES (Continued)

| Reactant                                               | Conditions                                                                                  | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | Refs.      |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|
| CH <sub>3</sub> O<br>O <sub>2</sub> CCH <sub>3</sub> O | 30% H <sub>2</sub> O <sub>2</sub> , HCO <sub>2</sub> H, 12 h                                | $CH_{3O} \rightarrow CH_{3O} \rightarrow O$ $O_{2}CCH_{3} \rightarrow O_{2}CCH_{3}$ $I \qquad II$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (81)        | 349        |
| to A                                                   | TFPAA (90%), 1 h, 25°                                                                       | I:II = 70:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (92)        | 448        |
| O= NCO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>      | PNPBA, NaHCO3, CH2Cl2, 7 d, 25°                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0)         | 1073       |
| O NCO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>       | MCPBA, NaHCO3, CH2Cl2, 42 h, 25°                                                            | $0 = \underbrace{\bigwedge_{0}^{1} NCO_2C_2H_5}_{0} + \underbrace{\bigwedge_{0}^{1} NCO_2C_2H_5}_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (80)        | 424        |
|                                                        | PAA, NaOAc, AcOH, 18 h, 25°                                                                 | I II<br>I:II = 70:30<br>I:II = 100:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (80)        | 424        |
| 4 po                                                   | 40% PAA, NaOAc, AcOH, 5 d, 25°                                                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (94)        | 362        |
| A.                                                     | 40% PAA, NaOAc, AcOH, 5 d, 25°                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (82)        | 362, 366   |
|                                                        | MCPBA, TsOH, CH <sub>2</sub> Cl <sub>2</sub> , 7 d, 25°<br>H <sub>2</sub> SO <sub>5</sub>   | 1:11 = 75:25<br>1:11 = 63:37<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (78)<br>(—) | 363<br>668 |
|                                                        |                                                                                             | $+ \underbrace{HO}_{O} \underbrace{OH}_{O} $ | 015)        |            |
|                                                        | 1. 40% PAA, NaOAc, AcOH, 5 d, 25°<br>2. H <sub>2</sub> SO <sub>4</sub>                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (68)        | 666        |
|                                                        | 40% PAA, H <sub>2</sub> SO <sub>4</sub> , AcOH-H <sub>2</sub> SO <sub>4</sub> ,<br>5 d, 27° | V + II<br>II:V = 25:75<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (21)        | 366        |
| d to                                                   | PAA, NaOAc, AcOH, 14 d, 25°                                                                 | to + the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (35)        | 362        |
|                                                        |                                                                                             | 1 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11 		 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |            |

TABLE IV. REACTIONS OF BRIDGED BICYCLIC AND POLYCYCLIC KETONES (Continued)

| _               | Reactant | Conditions                                                  | Product(s) and Yield(s) (%)                              | Refs.                 |
|-----------------|----------|-------------------------------------------------------------|----------------------------------------------------------|-----------------------|
|                 | Ar.      | 30% H <sub>2</sub> O <sub>2</sub> , AcOH, 7 d, 25°          | $(48) + HO C(CH_3)_2CH_2CO_2H$                           | 428, 429              |
|                 | H        | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 3 h, 25°           |                                                          | 465                   |
|                 | 0<br>II  | 40% PAA, NaOAc, AcOH, 24 h, 25°                             | I II II = 85:15 $I:II = 92:8 (50)$                       | 465                   |
|                 | 0        | MPPA, ether, 100 h, 25°                                     | (80)                                                     | 472                   |
| C <sub>II</sub> | A.       | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 240 h, 25°         | (78)                                                     | 444                   |
|                 | Å        | 70% MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 12 h, 25°      | (90)                                                     | 381                   |
|                 | A.       | MCPBA, TsOH, CH <sub>2</sub> Cl <sub>2</sub> , 48 h, reflux |                                                          | 378, 438,<br>439, 974 |
|                 |          | CAN, CH <sub>3</sub> CN-H <sub>2</sub> O, 1 h, 30°          | (-)                                                      | 378, 689              |
|                 | Br. DO   | MCPBA or TFPAA, CH <sub>2</sub> Cl <sub>2</sub> , reflux    | (0)                                                      | 438                   |
|                 |          | TFPAA (90%), CH <sub>2</sub> Cl <sub>2</sub> , 15 h, 25°    | $ \begin{array}{c}                                     $ | 438                   |
|                 | ОНОН     | Pb(OAc)4, C6H6-C5H5N, 6 h                                   |                                                          | ) 690                 |

TABLE IV. REACTIONS OF BRIDGED BICYCLIC AND POLYCYCLIC KETONES (Continued)

| Reactant                         | Conditions                                                                                                                                                                    | Product(s) and Yield(s) (%)                     | £             | Refs.    |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------|----------|
|                                  | PAA, AcOH, 12 h, 50°                                                                                                                                                          | NC HO                                           | (63)          | 476      |
| H R                              | PAA, AcOH, 12 h, 70°                                                                                                                                                          | H HO<br>CN O                                    | (50)          | 476      |
| (A)                              | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 48 h                                                                                                                                 | CALC <sup>®</sup>                               | (88)          | 444      |
| et e                             | 50% H <sub>2</sub> O <sub>2</sub> , NaOH, CH <sub>3</sub> OH-H <sub>2</sub> O, 17 h, 5°                                                                                       | CH <sub>2</sub> CO <sub>2</sub> H               | (97)          | 406      |
| NCO <sub>2</sub> CH <sub>3</sub> | MCPBA, 4,4 <sup>4</sup> thiobis-(6-1-C <sub>4</sub> H <sub>9</sub> - <i>m</i> -cresol),<br>CH <sub>2</sub> Cl <sub>2</sub> , reflux                                           | 0 CO <sub>2</sub> CH <sub>3</sub><br>0 O        | (93)          | 470      |
| C2H5O2CNH<br>CH3O2C              | MCPBA, CHCl <sub>3</sub> , 1 h, 20°                                                                                                                                           | $C_{2}H_{5}O_{2}CNH$                            | (—)           | 385      |
| o o                              | MCPBA, CH <sub>2</sub> Cl <sub>2</sub>                                                                                                                                        | o o o                                           | (75)          | 355      |
| JOCH3<br>OCH3                    | <ol> <li>40% PAA (1 eq), NaOAc, AcOH,<br/>3 h, 50°</li> <li>40% PAA (1 eq), 72 h, 25°</li> <li>10% NaOH. (CH<sub>1</sub>)<sub>2</sub>SO<sub>4</sub>, 2 h, 25°</li> </ol>      | CH <sub>2</sub> CO <sub>2</sub> CH <sub>3</sub> | (60)          | 423, 753 |
| ,och3                            | <ol> <li>40% PAA (1 eq), NaOAc, AcOH,<br/>3.5 h, 50°</li> <li>40% PAA (1 eq), 72 h, 25°</li> <li>10% NaOH, (CH<sub>3</sub>)<sub>2</sub>SO<sub>4</sub>, 2 h, reflux</li> </ol> | CH2CO2CH3                                       | (60)          | 753      |
| J.o                              | 90% $H_2O_2$ , BF <sub>3</sub> etherate, ether, 70 h, 25°                                                                                                                     | Joo + Jo                                        | (55) + (40)*  | 372      |
| T =0                             | 90% $H_2O_2$ , BF <sub>3</sub> etherate, ether, 70 h, 25°                                                                                                                     | Å                                               | (76)<br>(20)* | 372      |

TABLE IV. REACTIONS OF BRIDGED BICYCLIC AND POLYCYCLIC KETONES (Continued)

| Reactant                                         | Conditions                                                                               | Product(s) and Yield(s) (%)                                                                                    |               | Refs.  |
|--------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------|--------|
| to Ar                                            | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 10 h, 20–25° | $t_{0}$ + $t_{0}$ + $t_{0}$                                                                                    | (90)          | 38, 39 |
| to Aio                                           | TFPAA, Na2HPO4, CH2Cl2, 16 h, 25°                                                        | I II<br>I:II = 53:47<br>$\downarrow 0$<br>$\downarrow 0$<br>$\downarrow 0$<br>$\downarrow 0$<br>$\downarrow 0$ | (85)          | 38     |
| to to                                            | TFPAA, CH <sub>2</sub> Cl <sub>2</sub> , 36 h, 25°                                       | to to to to to to                                                                                              | (52)<br>(38)* | 40     |
| A-po                                             | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 70 h                                            | I II = $67:33$                                                                                                 | (86)          | 444    |
| CH30                                             | PAA, AcOH, 14 h, 20°                                                                     | CH <sub>3</sub> O                                                                                              | (75)          | 476    |
| CH <sub>3</sub> O O                              | PAA, AcOH, 24 h, 40°                                                                     | CH <sub>3</sub> O O                                                                                            | (31)          | 476    |
| CH <sub>3</sub> SO <sub>3</sub>                  | SeO <sub>2</sub> , H <sub>2</sub> O <sub>2</sub> , 1-BuOH, 30 h, 20°                     | CH <sub>3</sub> SO <sub>3</sub>                                                                                | (82)          | 476    |
| CH <sub>3</sub> SO <sub>3</sub> O                | PAA, AcOH, 30 h, 40°                                                                     | CH <sub>3</sub> SO <sub>3</sub> O                                                                              | (81)          | 476    |
| O NCO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | 40% PAA, NaOAc, AcOH, 72 h, 25°                                                          | $0 = \underbrace{NCO_2C_2H_5}_{O} + \underbrace{0}_{O} + \underbrace{NCO_2C_2H_5}_{O}$                         | (60)          | 424    |
| Y                                                | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 24 h, 25°                  | $     I = 62:38     I:II = 50:50     \downarrow                                $                               | (73)          | 424    |
| CH <sub>3</sub> O                                | 9% PAA, NaOAc, AcOH, 10 d, 25°                                                           | $CH_{3O}$ + $CH_{3O}$                                                                                          | (67)          | 368    |
|                                                  |                                                                                          | I II<br>minor major                                                                                            |               |        |

TABLE IV. REACTIONS OF BRIDGED BICYCLIC AND POLYCYCLIC KETONES (Continued)



TABLE IV. REACTIONS OF BRIDGED BICYCLIC AND POLYCYCLIC KETONES (Continued)

•

| Reactant                                           | Conditions                                                                                                                                                                                                  | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | Refs.           |  |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|--|
| ,och3                                              | 1. 40% PAA (1 eq), NaOAc, AcOH,<br>4 h, 50°<br>2. 40% PAA (1 eq), 96 h, 25°                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (17)              | 423             |  |
|                                                    | <ol> <li>40% PAA (1 eq), NaOAc, AcOH,<br/>2 h, 50°</li> <li>40% PAA (1 eq), 48 h, 25°</li> <li>K<sub>2</sub>CO<sub>3</sub>, (CH<sub>3</sub>)<sub>2</sub>SO<sub>4</sub>, acetone,<br/>2 h, reflux</li> </ol> | OCH2CO2CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (52)              | 423             |  |
| 1-C4H9CO2                                          | TFPAA, Na2HPO4, CH2Cl2, 12 h, 15°<br>O                                                                                                                                                                      | $t - C_4 H_9 CO_2$<br>t = 0 $t = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>(89)         | 38, 39          |  |
| to to                                              | TFPAA (90%), Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>13 h, 20°                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (77)              | 38, 453,<br>454 |  |
| 23 × 10                                            | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 6 h, 25°                                                                                                                        | to to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (81)              | 38, 453         |  |
| to CH2O3SCH                                        | I <sub>3</sub><br>TFPAA, №2HPO4, CH2Cl2, 1 h, 25°                                                                                                                                                           | +0 $+0$ $+0$ $+0$ $+0$ $+0$ $+0$ $+0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SCH3<br>0<br>(93) | 39              |  |
| CN O                                               | 1. MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 25°, 17–20 h<br>2. NaHSO <sub>3</sub>                                                                                                                           | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (65)              | 371c            |  |
| n-C <sub>3</sub> H <sub>11</sub>                   | 6% PAA, H <sub>2</sub> SO <sub>4</sub> , AcOH, 12 h, 0°                                                                                                                                                     | n-CsH11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (75)              | 365             |  |
| n-C4H9                                             | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 25°                                                                                                                                           | $n-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_4H_9$<br>$r-C_$ | 11 (73)           | 349             |  |
| C <sub>13</sub>                                    | 30% H <sub>2</sub> O <sub>2</sub> , NaOAc, AcOH, 36 h, 25°                                                                                                                                                  | I:II = 80:20<br>I:II = 100:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (—)               | 349             |  |
| Ci O <sub>2</sub> CC <sub>6</sub> H <sub>4</sub> C | I-m MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 66 h, 20°                                                                                                                                 | $O_2CC_6H_4CI-m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (79)              | 388             |  |
| via<br>CI<br>OTBDM<br>Br<br>BnO<br>O               | Сс <sub>6</sub> H <sub>4</sub> CI- <i>т</i><br>S<br>MCPBA, NaHCO3, CH2Cl2, 5–20°                                                                                                                            | $Br \rightarrow 0$<br>BnO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (96)              | 386             |  |



TABLE IV. REACTIONS OF BRIDGED BICYCLIC AND POLYCYCLIC KETONES (Continued)



TABLE IV. REACTIONS OF BRIDGED BICYCLIC AND POLYCYCLIC KETONES (Continued)



TABLE IV. REACTIONS OF BRIDGED BICYCLIC AND POLYCYCLIC KETONES (Continued)

| Rea                                     | actant   | Conditions                                                                                   | Product(s) and Yield(s) (%)                                                                     |      | Refs.    |
|-----------------------------------------|----------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------|----------|
|                                         | 50<br>9  | MCPBA (2.5 eq), TsOH, benzene, 4 h, 25°                                                      | A o o                                                                                           | (48) | 440      |
| O NCO2                                  | Bn 1     | MCPBA, NaHCO3, CH2Cl2, 42 h, 25°                                                             | $0 = \underbrace{\bigwedge_{0}^{1} NCO_{2}Bn}_{0} + \underbrace{\bigvee_{0}^{1} NCO_{2}Bn}_{0}$ | (80) | 424      |
| BnOCH <sub>2</sub>                      | 2        | 28% PAA, NaOAc, AcOH, 18 h, 25°                                                              | I II<br>I:II = 69:31<br>I:II = 100:0<br>BnOCH <sub>2</sub>                                      | (82) | 424      |
| - Pro                                   |          | MCPBA, CH <sub>2</sub> Cl <sub>2</sub>                                                       |                                                                                                 | (95) | 348      |
| CH <sub>3</sub> O<br>OBn                | ,        | MCPBA, NaHCO3, CH2Cl2, 25°                                                                   | $CH_{3}O \rightarrow O + O OBn O OBn OBn OBn OBn OBn OBn OBn OBn$                               | (81) | 349      |
|                                         | 3        | 50% H <sub>2</sub> O <sub>2</sub> , NaOAc, AcOH, 30 h, 50°                                   | I II<br>I:II = 55:45<br>I:II = 100:0                                                            | (70) | 349      |
| f                                       | N        | MCPBA, NaHCO3, CH2Cl2, 9 h, 25°                                                              | or foo                                                                                          | (79) | 421      |
| n-C <sub>5</sub> H <sub>11</sub> COCH=C |          | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 25°                                                 | n-C <sub>3</sub> H <sub>11</sub> COCH=CH                                                        | (62) | 407      |
| CH=CHCOO                                | C5H11-71 | мсрва, сн <sub>2</sub> сі <sub>2</sub> , 25°                                                 | CH=CHCOC <sub>5</sub> H <sub>11</sub> -n                                                        | (11) | 407      |
| OH<br>n-C <sub>5</sub> H <sub>11</sub>  | F<br>Z   | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, CH <sub>3</sub> OH–H <sub>2</sub> O,<br>48 h, 5°   | CH <sub>2</sub> CO <sub>2</sub> H OH<br>F<br>OH                                                 | (75) | 398, 411 |
| Р<br>С <sub>5</sub> H <sub>11</sub> -л  | 3        | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, CH <sub>3</sub> OH–H <sub>2</sub> O,<br>20 h, 0–5° | $CH_2CO_2H$ $F$ $C_5H_{11}-n$ $OH OH$                                                           | (75) | 399      |

TABLE IV. REACTIONS OF BRIDGED BICYCLIC AND POLYCYCLIC KETONES (Continued)



TABLE IV. REACTIONS OF BRIDGED BICYCLIC AND POLYCYCLIC KETONES (Continued)

|                                  | Reactant                                        | Conditions                                                                                                  | Product(s) and Yield(s) (%)                                                                                                                       | Refs.  |
|----------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|                                  |                                                 | 30% H₂O₂, №OH, CH3OH-H2O, 4 h, 25°                                                                          |                                                                                                                                                   | 433    |
| n-C <sub>5</sub> H <sub>11</sub> | OH<br>F<br>O                                    | 1. 30% H <sub>2</sub> O <sub>2</sub> , NaOH, CH <sub>3</sub> OH-H <sub>2</sub> O,<br>3 h, 0°<br>2. 9 h, 25° | HO <sub>2</sub> CCH <sub>2</sub> OH<br>F C <sub>5</sub> H <sub>11</sub> - <i>n</i> (100)                                                          | 404    |
| to<br>of<br>C <sub>5</sub> H     |                                                 | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 15 h, 20°                       | $ \begin{array}{c} +0\\ 0\\ -C_{3}H_{11}-n\\ 1 \end{array} + \begin{array}{c} +0\\ -C_{3}H_{11}-n\\ -C_{3}H_{11}-n\\ 1 \end{array} $ (85)         | 38     |
| to                               | 0<br>C <sub>5</sub> H <sub>11</sub> -n<br>0     | TFPAA, Na2HPO4, CH2Cl2, 8 h, 25°                                                                            | $I:II = 75:25$ $+0$ $-C_5H_{11}-n$ $0$ (78)                                                                                                       | 38     |
| to                               | 0<br>CsH11-n<br>0                               | TFPAA, Na2HPO4, CH2Cl2, 15 h, 20°                                                                           | + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +                                                                                                             | 38, 39 |
| OCH3                             | $\langle \cdot \rangle$                         | 9% PAA, NaOAc, AcOH, 24 h, 25°                                                                              | $ \begin{array}{c}     1:11 = 50:50 \\     \hline                               $                                                                 | 368    |
| H                                | ∑C6H5<br>7                                      | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, CH <sub>3</sub> OH–H <sub>2</sub> O, 0–20°                        | $C_{6}H_{5} \xrightarrow{H} H \qquad H \xrightarrow{C_{6}H_{5}} (29)$                                                                             | 409    |
| Huge                             | CH <sub>2</sub> )₂C <sub>6</sub> H <sub>5</sub> | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, CH <sub>3</sub> OH–H <sub>2</sub> O, 0–20°                        | $I: II = 21:79$ $C_{6}H_{5}(CH_{2})_{2} H H H (CH_{2})_{2}C_{6}H_{5}$ $H H H H H (CH_{2})_{2}C_{6}H_{5}$ $H H H H H H H H H H H H H H H H H H H $ | 409    |
| 0-5                              | A-J                                             | MCPBA, TsOH, CH <sub>2</sub> Cl <sub>2</sub> , 48 h, 25°                                                    |                                                                                                                                                   | 625    |

TABLE IV. REACTIONS OF BRIDGED BICYCLIC AND POLYCYCLIC KETONES (Continued)

| Reactant                                 | Conditions                                                                                                                                                                        | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | Refs.  |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|
| C <sub>6</sub> H <sub>5</sub>            | H <sub>2</sub> O <sub>2</sub> , Ac <sub>2</sub> O, AcOH, 10 h, 20°                                                                                                                | $C_{6}H_5$ $H_0$ + $C_{6}H_5$ $H_0$ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (69)          | 476    |
| H<br>C <sub>6</sub> H <sub>5</sub> O     | H <sub>2</sub> O <sub>2</sub> , Ac <sub>2</sub> O, AcOH, 24 h, 50°                                                                                                                | I:II = 67:33 $H + F + F + F + F + F + F + F + F + F +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (76)          | 476    |
| BnO, H H                                 | <ol> <li>30% H<sub>2</sub>O<sub>2</sub>, NaOH, CH<sub>3</sub>OH-H<sub>2</sub>O,<br/>48 h, 0°</li> <li>BF<sub>3</sub> etherate/CH<sub>2</sub>Cl<sub>2</sub>, 45 min, 0°</li> </ol> | 1: H = 50:50 BnO H H H H H H H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (78)          | 418    |
| to Cotto                                 | TFPAA, Na2HPO4, CH2Cl2, 12 h, 25°                                                                                                                                                 | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (93)          | 38     |
|                                          |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |        |
| HO C6H5                                  | TFPAA, Na2HPO4, CH2Cl2, 11 h, 25°                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (67)          | 38     |
| to t | TFPAA, Na2HPO4, CH2Cl2, 36 h, 20°                                                                                                                                                 | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ } \\ \end{array}  } \\ \end{array}  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } | (16)<br>(81)* | 38, 40 |
|                                          |                                                                                                                                                                                   | I II<br>I:II = 61:39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |        |
| NCO <sub>2</sub> Bn                      | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 24 h, 25°                                                                                             | 0 NCO <sub>2</sub> Bn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (61)          | 1073   |
| O NCO <sub>2</sub> Bn                    | MCPBA, NaHCO3, CH2Cl2, 64 h, 25°                                                                                                                                                  | $0 = \sqrt{\frac{NCO_2Bn}{NCO_2Bn}} + \sqrt{\frac{NCO_2Bn}{NCO_2Bn}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (71)          | 424    |
|                                          | PAA NaOAc AcOH 7 d 25°                                                                                                                                                            | I II<br>I:II = 81:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0)           | 424    |
| 1                                        |                                                                                                                                                                                   | 1 _1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |        |
| O NTS CO <sub>2</sub> CH <sub>3</sub>    | PAA, NaOAc, AcOH, 72 h, 50°                                                                                                                                                       | $0 \underbrace{- \underbrace{NTs}_{CO_2CH_3}}_{O} + \underbrace{0}_{O} \underbrace{- \underbrace{NTs}_{CO_2CH_3}}_{O}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (47)          | 427    |
|                                          |                                                                                                                                                                                   | I II<br>I:II = 96:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |        |

TABLE IV. REACTIONS OF BRIDGED BICYCLIC AND POLYCYCLIC KETONES (Continued)

| Reactant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Conditions                                                                                                                                              | Product(s) and Yield(s) (%)                                                                                                                                                                   |                       | Refs.        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------|
| o OBn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub>                                                                               | O O OBn                                                                                                                                                                                       | (80)                  | 443          |
| BnN(CH <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40% PAA, CH2Cl2, 24 h, 25°                                                                                                                              | BnN(CH <sub>3</sub> )                                                                                                                                                                         | (46)                  | 347          |
| OH<br>n-C <sub>5</sub> H <sub>11</sub> CH <sub>2</sub> I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5<br>30% H₂O₂, NaOH, CH₃OH–H₂O, 36 h, 5°                                                                                                                | CH <sub>2</sub> CO <sub>2</sub> H OH<br>C <sub>3</sub> H <sub>11</sub> -n<br>OH                                                                                                               | (81)                  | 397          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (CH <sub>3</sub> ) <sub>3</sub> SiOOSi(CH <sub>3</sub> ) <sub>3</sub> , BF <sub>3</sub> etherate,<br>CH <sub>2</sub> Cl <sub>2</sub> , 1 h, -20 to -10° |                                                                                                                                                                                               | (43)                  | 477          |
| THPO, H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, CH <sub>3</sub> OH–H <sub>2</sub> O,<br>48 h, 0°                                                              | H<br>OTHP<br>OH                                                                                                                                                                               | (75)                  | 262, 415     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hg-1<br>TFPAA, Na2HPO4, CH2Cl2, 12 h, 25°                                                                                                               | +0 $+0$ $+0$ $+0$ $+0$ $+0$ $+0$ $+0$                                                                                                                                                         | 2CC₄H<br>O            | 9-1          |
| $ \begin{array}{c}  + 0 \\  + 0 \\  + 1 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  - 0 \\  $ | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 36 h, 20°                                                                   | $I \qquad II \qquad$                                                                                                              | (91)<br>(38)<br>(54)* | 38, 39<br>38 |
| C <sub>17</sub><br>H <sub>2</sub> C <sub>6</sub> H <sub>4</sub> (C <sub>3</sub> H <sub>7</sub> -n)-p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, CH <sub>3</sub> OH–H <sub>2</sub> O, 0–20°                                                                    | $1: II = 66:34$ $p - (n - C_3 H_7) C_6 H_4 - H + C_6 H_4 (C_3 H_7 - 4) + H + H + H + H + H + H + H + H + H + $                                                                                | n)-p<br>(72)          | 409          |
| NCO <sub>2</sub> Bn<br>CO <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 72 h, 25°                                                                                 | $I:II = 24:76$ $0 = \underbrace{NCO_2Bn}_{O} + \underbrace{O}_{O} \underbrace{NCO_2Bn}_{O}$ $0 = \underbrace{O}_{O} \underbrace{NCO_2CH_3}_{O} + \underbrace{O}_{O} \underbrace{NCO_2Bn}_{O}$ | (59)                  | 424, 426     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PAA, NaOAc, AcOH, 72 h, 25°                                                                                                                             | I = 18:82<br>I:II = 100:0                                                                                                                                                                     | (38)                  | 424          |

TABLE IV. REACTIONS OF BRIDGED BICYCLIC AND POLYCYCLIC KETONES (Continued)



TABLE IV. REACTIONS OF BRIDGED BICYCLIC AND POLYCYCLIC KETONES (Continued)



TABLE IV. REACTIONS OF BRIDGED BICYCLIC AND POLYCYCLIC KETONES (Continued)

|     | Reactant                                  | Conditions                                                                                     | Product(s) and Yield(s) (%)                                |                | Refs.    |
|-----|-------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------|----------|
|     |                                           | TFPAA (85%), CH <sub>2</sub> Cl <sub>2</sub> , 12 h, 20°                                       | I:II = 100:0                                               | (48)           | 435      |
| но  | H<br>H<br>CH <sub>2</sub> OH              | PBA, TsOH, CHCl <sub>3</sub> , 3 d, 0°                                                         | HO HH HHO<br>HO CH <sub>2</sub> OH                         | (72)           | 434      |
| C₂0 |                                           | 40% PAA, NaOAc, AcOH, 5 d, 25°                                                                 | $ \begin{array}{c}                                     $   | (95)           | 474      |
| Ĺ   | C <sub>6</sub> H <sub>5</sub>             | 40% PAA, NaOAc, AcOH, 5 d, 25°                                                                 | 60:40 ratio of isomers                                     | (100)          | 474      |
| Ľ   | О<br>С <sub>6</sub> H <sub>5</sub>        | 30% H <sub>2</sub> O <sub>2</sub> , 40% H <sub>2</sub> SeO <sub>4</sub> , THF,<br>25 h, reflux | C <sub>6</sub> H <sub>5</sub>                              | (89)           | 474      |
| 5   | H<br>H<br>CO <sub>2</sub> CH <sub>3</sub> | MCPBA, CHCl <sub>3</sub> , 18 h, heat                                                          | H<br>CO <sub>2</sub> CH <sub>3</sub>                       | (60)           | 419      |
| pNI | BnO <sub>2</sub> C                        | 85% MCPBA, CHCl <sub>3</sub> , 2 h, 25°                                                        | $pNBnO_2C$ + $O$ + $O$ |                | 377      |
| 5   | H<br>H<br>CO <sub>2</sub> CH <sub>3</sub> | PBA, TsOH, CHCl <sub>3</sub>                                                                   | O<br>H<br>CO <sub>2</sub> CH <sub>3</sub>                  | (76)           | 434      |
| ζ   | H<br>H                                    | TFPAA (95%), CH2Cl2, 4 h, reflux                                                               |                                                            | )<br>(20)*     | 436      |
| t   | 0 C <sub>5</sub> H <sub>11</sub> -n       | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 12 h, 20°          | (27) (52)<br>$O C_{5}H_{11}-n$<br>$O C_{5}H_{11}$          | (77)<br>+(12)* | 452, 454 |
|     |                                           |                                                                                                |                                                            |                |          |

TABLE IV. REACTIONS OF BRIDGED BICYCLIC AND POLYCYCLIC KETONES (Continued)

| Reactant                                                                             | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Refs.                                      |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| NCO <sub>2</sub> Bn<br>C <sub>6</sub> H <sub>5</sub>                                 | MCPBA, NaHCO3, CH2Cl2, 72 h, 25°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $O = \underbrace{NCO_2Bn}_{O} + \underbrace{O}_{C_6H_5} + \underbrace{O}_{O} + \underbrace{C_6H_5}_{U} $ (55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ) 424                                      |
| $\square$                                                                            | PAA, NaOAc, AcOH, 24 h, 25°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I:II = 60:40<br>I:II = 100:0 (38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) 424                                      |
|                                                                                      | 1. 40% PAA, NaOAc, AcOH, 15 h, 25°<br>2. 1 h, 80°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 441                                        |
| OTBDMS<br>-C <sub>5</sub> H <sub>11</sub><br>Br O                                    | MCPBA, NaHCO <sub>3</sub> , CHCl <sub>3</sub> , 16 h, 25°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (85) (15)<br>OTBDMS OTBDMS<br>$n-C_5H_{11}$ + $H_{1-1}$ (95)<br>$B_{T}$ Bir 0 (95)<br>I II<br>I:II = 75:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) 341, 342                                 |
| NCO <sub>2</sub> Bn<br>CH <sub>2</sub> O <sub>2</sub> CC <sub>6</sub> H <sub>5</sub> | PAA, NaOAc, AcOH, 48 h, 25°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $O = \underbrace{\bigwedge_{O}}^{NCO_2Bn} + \underbrace{\bigvee_{O}}^{NCO_2Bn} + \bigvee$ | 424, 426                                   |
|                                                                                      | MCPBA, NaHCO3, CH2Cl2, 72 h, 25°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I = 84:16<br>I:II = 60:40 (42)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )<br>) 424, 426                            |
| C6H5-0                                                                               | H <sub>2</sub> O <sub>2</sub> , AcOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_6H_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) 379                                      |
|                                                                                      | $H_2O_2$ , AcOH, heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_6H_5$ (21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ) 379                                      |
| CoHs-                                                                                | H <sub>2</sub> O <sub>2</sub> , AcOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_6H_5$ $C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i) 379                                     |
|                                                                                      | H <sub>2</sub> O <sub>2</sub> , AcOH, heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $C_6H_5$ (26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i) 379                                     |
|                                                                                      | Reactant<br>A NCO <sub>2</sub> Bn<br>$C_{0}H_{5}$<br>$C_{0}H_{5}$<br>$C_{0}H_{1}$<br>$C_{1}H_{1}$<br>$C_{1}H_{1}$<br>$C_{1}H_{1}$<br>$C_{1}H_{2}$<br>$C_{2}CC_{6}H_{5}$<br>$C_{1}H_{2}$<br>$C_{2}CC_{6}H_{5}$<br>$C_{1}H_{2}$<br>$C_{2}CC_{6}H_{5}$<br>$C_{1}H_{2}$<br>$C_{2}CC_{6}H_{5}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{2}CC_{6}H_{5}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{2}CC_{6}H_{5}$<br>$C_{1}H_{2}$<br>$C_{2}CC_{6}H_{5}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{1}H_{2}$<br>$C_{2}H_{2}$<br>$C_{1}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{1}H_{2}$<br>$C_{2}H_{2}$<br>$C_{1}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2}H_{2}$<br>$C_{2$ | ReactantConditions $\checkmark$ MCPBA, NaHCO <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 72 h, 25° $\checkmark$ PAA, NaOAc, AcOH, 24 h, 25° $\circ$ $\rightarrow$ $\circ$ $\rightarrow$ $\circ$ $\rightarrow$ $\rightarrow$ $\rightarrow$ $i$ 40% PAA, NaOAc, AcOH, 15 h, 25° $i$ 1. 40% PAA, NaOAc, AcOH, 15 h, 25° $i$ <td>RatchConditionsProduct(s) and Yield(s) (%)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RatchConditionsProduct(s) and Yield(s) (%) |

TABLE IV. REACTIONS OF BRIDGED BICYCLIC AND POLYCYCLIC KETONES (Continued)



TABLE IV. REACTIONS OF BRIDGED BICYCLIC AND POLYCYCLIC KETONES (Continued)

| _              | Reactant                      | Conditions                                                                                                                                                                                                                                      | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Refs.         |
|----------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Cs             | CH3CO                         | 45% PAA, CHCl <sub>3</sub> , 5 d, 25°                                                                                                                                                                                                           | $CH_{3}CO \rightarrow + CH_{3}CO_{2} \rightarrow 0$ $I \qquad II$ $I:II = 89:11$ $(22)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ) 480         |
| C <sub>6</sub> | O<br>Br                       | TFPAA (90%), Na2HPO4, CH2Cl2, 4 h, 0°                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) 493         |
| 1              | ů,                            | 15% H <sub>2</sub> O <sub>2</sub> , NaOH, CH <sub>3</sub> OH, 20 min, -10 to 25°                                                                                                                                                                | $CH_3CO(CH_2)_3CO_2H + CH_3CO(CH_2)_3CO_2C_2H$<br>I II<br>(25) (60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | is 179        |
|                |                               | $H_2O_2$ , NaOH, $C_2H_5OH$ , $-10$ to 25°                                                                                                                                                                                                      | I (33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) 158         |
|                | Ŏ                             | MCPBA, CF <sub>3</sub> CO <sub>2</sub> H, CH <sub>2</sub> Cl <sub>2</sub> , 3 h, 0–25°                                                                                                                                                          | o<br>(52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) 742         |
|                | ~                             | <ol> <li>t-C<sub>4</sub>H<sub>9</sub>(CH<sub>3</sub>)<sub>2</sub>SiCl, LDA, THF-HMPA</li> <li>H<sub>2</sub>O<sub>2</sub> (anh), TFAA</li> <li>(C<sub>6</sub>H<sub>5</sub>CO)<sub>2</sub>O, p-dimethylaminopyridine,<br/>hexane, -20°</li> </ol> | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) 182, 1085   |
|                | COCH3                         | 45% PAA, CHCl <sub>3</sub> , 4.5 h, 20-25°                                                                                                                                                                                                      | $\begin{array}{c} & & & \\ & & & \\ O \\ & & & \\ (20) \\ \end{array} \begin{array}{c} COCH_3 \\ + \\ O \\ COCH_3 \\ \hline O \\ $ | 480           |
| C7             | COCH3                         | MCPBA, H <sub>2</sub> SO <sub>4</sub> , CHCl <sub>3</sub> , 48 h, 0-20°                                                                                                                                                                         | 0,02CCH3 (35)<br>(60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) 488<br>)*   |
| C.             |                               | H <sub>2</sub> O <sub>2</sub> , NaOH, C <sub>2</sub> H <sub>5</sub> OH, -10 to 25°                                                                                                                                                              | CH <sub>3</sub> CH <sub>2</sub> CO(CH <sub>2</sub> ) <sub>3</sub> CO <sub>2</sub> H (38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8) 158        |
|                | COCH3                         | MCPBA, H <sub>2</sub> SO <sub>4</sub> , CHCl <sub>3</sub> , 48 h, 0-20°                                                                                                                                                                         | $O_2CCH_3 + O_2CCH_3 \qquad (49)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )* 488        |
|                | ů.                            | 15% H <sub>2</sub> O <sub>2</sub> , NaOH, C <sub>2</sub> H <sub>5</sub> OH, 20 min,<br>-10 to 25°                                                                                                                                               | $i-C_{3}H_{7}CO(CH_{2})_{3}CO_{2}C_{2}H_{5}$<br>(60)<br>+ $i-C_{3}H_{7}CO(CH_{2})_{3}CO_{2}H$<br>(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 158, 179      |
|                | C <sub>2</sub> H <sub>5</sub> | H <sub>2</sub> O <sub>2</sub> , NaOH, C <sub>2</sub> H <sub>5</sub> OH, -10 to 25°                                                                                                                                                              | <i>n</i> -C <sub>3</sub> H <sub>7</sub> CO(CH <sub>2</sub> ) <sub>3</sub> CO <sub>2</sub> H (30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5) 158        |
| C,             | COCH3                         | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 15 h, 20°                                                                                                                                                                         | O <sub>2</sub> CCH <sub>3</sub> (5:<br>(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3) 487<br>3)* |
|                |                               | 80-85% MCPBA, CH2Cl2, 2 h, 25°                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5) 654        |

| TABLE V. | Reactions of $\alpha,\beta$ -Unsaturated Ketones |  |
|----------|--------------------------------------------------|--|

|                 | Reactant                                              | Conditions                                                                                        | Product(s) and Yield(s) (%)                                                                             |               | Refs. |
|-----------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------|-------|
|                 |                                                       | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , 90 h, 10°                                               |                                                                                                         | (36)<br>(64)* | 298   |
|                 |                                                       | MCPBA (2 eq), CH2Cl2, 24 h, 25°                                                                   | I                                                                                                       | (43)<br>(57)* | 298   |
|                 |                                                       | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 24 h, 25°             | $I + \bigcup_{\substack{\leftarrow 0 \\ CHO}}^{H} 0 + \bigcup_{\substack{\leftarrow 0 \\ O_2CH}}^{H} 0$ | (70)*         | 298   |
|                 | COCH3                                                 | MCPBA, H <sub>2</sub> SO <sub>4</sub> , CHCl <sub>3</sub> , 48 h, -5°                             | (9) (20) (1)<br>$O_2CCH_3 + O_02CCH_3$<br>(50) (13)                                                     | (38)*         | 488   |
|                 | C.Hr                                                  | H <sub>2</sub> O <sub>2</sub> , NaOH, C <sub>2</sub> H <sub>5</sub> OH, -10 to 25°                | л-С4H9CO(CH2)3CO2H<br>I                                                                                 | (37)          | 158   |
|                 |                                                       | 15% H <sub>2</sub> O <sub>2</sub> , NaOH, C <sub>2</sub> H <sub>5</sub> OH, 20 min,<br>-10 to 25° | $\frac{1}{(25)} + n - C_4 H_9 CO(CH_2)_3 CO_2 C_2 H_5$                                                  |               | 179   |
|                 | C <sub>3</sub> H <sub>7</sub> i                       | H <sub>2</sub> O <sub>2</sub> , NaOH, C <sub>2</sub> H <sub>5</sub> OH, -10 to 25°                | i-C4H9CO(CH2)3CO2H                                                                                      | (44)          | 158   |
|                 | 0<br>C <sub>2</sub> H <sub>5</sub>                    | H <sub>2</sub> O <sub>2</sub> , NaOH, C <sub>2</sub> H <sub>5</sub> OH, -10 to 25°                | s-C₄H₀CO(CH₂)₃CO₂H                                                                                      | (25)          | 158   |
|                 | CoCH <sub>3</sub><br>C <sub>2</sub> H <sub>5</sub> OH | 50% H <sub>2</sub> O <sub>2</sub> , NaOH, CH <sub>3</sub> OH, 1.25 h, 38-40°                      | CO <sub>2</sub> H                                                                                       | (70)          | 677   |
|                 |                                                       | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 10 d, 25°                                                | $O_2CCH_3$<br>H<br>H<br>H<br>O                                                                          | (19)<br>(56)* | 482   |
| C <sub>10</sub> |                                                       | 15% H <sub>2</sub> O <sub>2</sub> , NaOH, C <sub>2</sub> H <sub>5</sub> OH, 20 min,<br>−10 to 25° | $ \begin{cases}                                   $                                                     |               | 179   |
|                 | HO <sub>2</sub> C COCH <sub>3</sub>                   | 80% MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 24 h, 15-30°                    | (25)<br>HO <sub>2</sub> C 0 <sub>2</sub> CCH <sub>3</sub>                                               | (71)          | 487   |

TABLE V. REACTIONS OF  $\alpha,\beta$ -UNSATURATED KETONES (Continued)
| Reactant   | Conditions                                                                                                                                                                                | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Refs.                |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|
| Ĵ-∽        | 15% H <sub>2</sub> O <sub>2</sub> , NaOH, CH <sub>3</sub> OH, 20 min, -10 to 25°                                                                                                          | CO(CH <sub>2</sub> ) <sub>3</sub> CO <sub>2</sub> H<br>I<br>(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 179                  |  |
|            |                                                                                                                                                                                           | + $CO(CH_{2})_{3}CO_{2}CH_{3}$<br>II<br>(60)<br>+ HO_{2}C(CH_{2})_{3}CO_{2}H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |  |
|            |                                                                                                                                                                                           | ш<br>(—)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |  |
|            | 1. 30% H <sub>2</sub> O <sub>2</sub> , NaHCO <sub>3</sub> , CH <sub>3</sub> OH, 32 h, 25°<br>2. 3 h, 70°<br>K <sub>2</sub> S <sub>2</sub> O <sub>8</sub> , H <sub>2</sub> SO <sub>4</sub> | I = (22)<br>(52)<br>I + III = (32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2) 179<br>5)*<br>179 |  |
| COCH3      |                                                                                                                                                                                           | (41) (8)<br>$O_2CCH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |  |
|            | МСРВА                                                                                                                                                                                     | <b>(</b> ) '-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -) 489               |  |
| $\bigcirc$ | H <sub>2</sub> O <sub>2</sub> , NaOH, 40°                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2) 298               |  |
|            | 85% MCPBA (1 eq), CH2Cl2, 24 h, −7°                                                                                                                                                       | $I:II = 10:90$ $II + \underbrace{H}_{0} = 0 \qquad (30)$ $II + \underbrace{H}_{0} = 0 + \underbrace{H}_{0} = 0$ $H + \underbrace{H}_{0} = 0 + \underbrace{H}_{0} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )* 298               |  |
|            | 85% MCPBA (2 eq), CH2Cl2, 24 h, 25°                                                                                                                                                       | V = V<br>V = V<br>V<br>V<br>V<br>V<br>V<br>V<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 298                  |  |
|            | TFPAA (90%) (3 eq), Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>72 h, 10°                                                                                     | $\begin{array}{c} H \\ \hline \\ \hline \\ CHO \end{array} + \begin{array}{c} H \\ \hline \\ CHO \end{array} + \begin{array}{c} H \\ \hline \\ CHO \end{array} + \begin{array}{c} H \\ CHO \end{array} + \begin{array}{c} H \\ CHO \end{array} + \begin{array}{c} H \\ CHO \\ + \\ CHO \end{array} + \begin{array}{c} H \\ CHO \end{array} + \begin{array}{c} H \\ CHO \end{array} + \\ CHO \\ + H \\ CHO \\ + H \\ CHO \\ + H \\ + H \\ CHO \\ + H \\ + H \\ CHO \\ + H \\ + H$ | 298                  |  |
|            |                                                                                                                                                                                           | $+ \underbrace{\downarrow}_{0}^{(41)} \underbrace{\downarrow}_{0}^{(29)} \\ + \underbrace{\downarrow}_{0}^{(29)} \\ \underbrace{\downarrow}_{0}$                                                                                   |                      |  |
|            | TFPAA (90%) (3 eq), Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,                                                                                                  | (30) $1V + VII + VIII$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 298                  |  |

TABLE V. REACTIONS OF  $\alpha,\beta$ -UNSATURATED KETONES (Continued)

-5

|     | Reactant                                           | Conditions                                                                         | Product(s) and Yield(s) (%)                                                                                      | Refs. |  |
|-----|----------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------|--|
|     |                                                    | 40% PAA, KOAc, AcOH, 25°                                                           | (60)                                                                                                             | 106   |  |
|     | C <sub>4</sub> H <sub>9</sub> -n                   | H <sub>2</sub> O <sub>2</sub> , NaOH, C <sub>2</sub> H <sub>5</sub> OH, -10 to 25° | <i>n</i> -C <sub>5</sub> H <sub>11</sub> CO(CH <sub>2</sub> ) <sub>3</sub> CO <sub>2</sub> H (29)                | 158   |  |
|     | C4H9-i                                             | H <sub>2</sub> O <sub>2</sub> , NaOH, C <sub>2</sub> H <sub>5</sub> OH, -10 to 25° | <i>i</i> -C <sub>4</sub> H <sub>9</sub> CH <sub>2</sub> CO(CH <sub>2</sub> ) <sub>3</sub> CO <sub>2</sub> H (30) | 158   |  |
|     |                                                    | H <sub>2</sub> O <sub>2</sub> , NaOH, C <sub>2</sub> H <sub>5</sub> OH, -10 to 25° | (C <sub>2</sub> H <sub>3</sub> ) <sub>2</sub> CHCO(CH <sub>2</sub> ) <sub>3</sub> CO <sub>2</sub> H (24)         | 158   |  |
|     |                                                    | -                                                                                  | i-C <sub>3</sub> H <sub>7</sub> 0 0 (74)                                                                         | 492   |  |
|     |                                                    | 40% PAA, KOAc, AcOH                                                                |                                                                                                                  | 106   |  |
|     |                                                    | MCPBA, CH2Cl2, 3 d, 25°                                                            | 02CCH <sub>3</sub><br>H<br>H<br>H<br>O<br>O<br>(59)                                                              | 481   |  |
| Cıı | C.H.                                               | PBA, CHCl <sub>3</sub> , 28°                                                       | $C_6H_5CO_2C_2H_5 + C_6H_5CO(CH_2)_2CO_2H$<br>(50) (5)                                                           | 1086  |  |
|     |                                                    | 40% PAA, KOAc, AcOH, 70 min, 30°                                                   | (60-80)                                                                                                          | 491   |  |
|     | CH <sub>3</sub> O <sub>2</sub> C COCH <sub>3</sub> | 80% MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 2 d, 20°         | $CH_3O_2C \longrightarrow O_2CCH_3 $ (51)                                                                        | 487   |  |
|     | 0                                                  | MCPBA, CHCl <sub>3</sub> , 25°                                                     |                                                                                                                  | 490   |  |
|     | О<br>С <sub>5</sub> Н <sub>11</sub> - <i>п</i>     | H <sub>2</sub> O <sub>2</sub> , NaOH, C <sub>2</sub> H <sub>3</sub> OH, -10 to 25° | <i>n</i> -C <sub>6</sub> H <sub>13</sub> CO(CH <sub>2</sub> ) <sub>3</sub> CO <sub>2</sub> H (39)                | 158   |  |

TABLE V. REACTIONS OF  $\alpha, \beta$ -UNSATURATED KETONES (Continued)



| TABLE V. REACTIONS OF a, B-UNSATURATED KETC | NES (Continued) |
|---------------------------------------------|-----------------|
|---------------------------------------------|-----------------|

|     |     | Reactant                                                               | Conditions                                                                                          | Product(s) and Yield(s) (%)                                                                  | 1             | Refs.    |
|-----|-----|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------|----------|
|     |     | COCH3                                                                  | 3-Heptadecylmonoperphthalic acid, NaHCO <sub>3</sub> ,<br>hexane-H <sub>2</sub> O (1:10), 24 h, 25° |                                                                                              | (68)<br>(30)* | 484      |
| 678 |     |                                                                        |                                                                                                     | и<br>+ Со<br>Ш                                                                               |               |          |
|     |     |                                                                        | PBA (2 eq.)                                                                                         | I:II:III = 83:11:6<br>III                                                                    | (100)         | 483, 484 |
|     |     | C7H15-n                                                                | H <sub>2</sub> O <sub>2</sub> , NaOH, C <sub>2</sub> H <sub>5</sub> OH, -10 to 25°                  | <i>n</i> -C <sub>8</sub> H <sub>17</sub> CO(CH <sub>2</sub> ) <sub>3</sub> CO <sub>2</sub> H | (28)          | 158      |
|     | C14 | O<br>N<br>C <sub>6</sub> H <sub>5</sub>                                | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, C <sub>2</sub> H <sub>5</sub> OH, 15 h, 5°                | CO <sub>2</sub> H<br>N<br>COCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                    | (40)          | 520      |
|     |     | C6H5                                                                   | 40% PAA, KOAc, AcOH, 70 min, 30°                                                                    | C <sub>6</sub> H <sub>5</sub>                                                                | (60–80)       | 491      |
|     |     | C <sub>6</sub> H <sub>4</sub> OCH <sub>3</sub> -p                      | 40% PAA, KOAc, AcOH, 70 min, 30°                                                                    | C <sub>6</sub> H <sub>4</sub> OCH <sub>3</sub> -p                                            | (60–80)       | 491      |
|     | c   | О<br>С <sub>8</sub> Н <sub>17</sub> - <i>п</i>                         | H <sub>2</sub> O <sub>2</sub> , NaOH, C <sub>2</sub> H <sub>5</sub> OH, -10 to 25°                  | <i>п</i> -С <sub>9</sub> Н <sub>19</sub> СО(СН <sub>2</sub> ) <sub>3</sub> СО <sub>2</sub> Н | (46)          | 158      |
| 679 | CB  |                                                                        | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 3 h, 0°                 |                                                                                              | (82)          | 493      |
|     |     | C <sub>6</sub> H <sub>5</sub> CH=CHCOC <sub>6</sub> H <sub>4</sub> F-p | K <sub>2</sub> S <sub>2</sub> O <sub>8</sub> , H <sub>2</sub> SO <sub>4</sub> , AcOH, 50 h, 17°     | $C_6H_5CH = CHO_2CC_6H_4F-p$                                                                 | (37)<br>(15)* | 486      |
|     |     | C6H3CH=CHCOC6H5                                                        | K <sub>2</sub> S <sub>2</sub> O <sub>8</sub> , H <sub>2</sub> SO <sub>4</sub> , AcOH, 170 h, 17°    | C <sub>6</sub> H <sub>5</sub> CH=CHO <sub>2</sub> CC <sub>6</sub> H <sub>5</sub>             | (20)          | 486      |
|     |     |                                                                        | PBA, CHCl <sub>3</sub> , 45 h, 25°                                                                  | $\begin{array}{cc} C_6H_5CHO + C_6H_5OH + C_6H_5CO_2H \\ (69) & (21) & (69) \end{array}$     | (56)*         | 485      |

TABLE V. REACTIONS OF  $\alpha,\beta$ -UNSATURATED KETONES (Continued)

|                 | Reactant                                                                            | Conditions                                                                              | Product(s) and Yield(s) (%)                                                                                                                                                     |       | Refs. |
|-----------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
|                 | HAN OH                                                                              | 1. 30% H <sub>2</sub> O <sub>2</sub> , NaOH, 25°<br>2. CH <sub>2</sub> N <sub>2</sub>   | CH <sub>3</sub> O <sub>2</sub> C<br>H<br>CH <sub>3</sub> O <sub>2</sub> C                                                                                                       | (50)  | 625   |
| 680             |                                                                                     | 3% H <sub>2</sub> O <sub>2</sub> , NaOH                                                 | $CO_2H + CO_2H + CO_2H$                                                                                                                                                         | (—)   | 674   |
|                 | n-C <sub>5</sub> H <sub>11</sub> COCH=CH                                            | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 25°                                            | n-C <sub>5</sub> H <sub>11</sub> COCH=CH                                                                                                                                        | (62)  | 407   |
|                 | CH=CHCOC <sub>5</sub> H <sub>11</sub> -n                                            | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 25°                                            | CH=CHCOC <sub>5</sub> H <sub>11</sub> - <i>n</i>                                                                                                                                | (11)  | 407   |
|                 |                                                                                     | H2O2, Na2CO3, dioxane-H2O, 60 h, 0°                                                     |                                                                                                                                                                                 |       | 673   |
|                 |                                                                                     |                                                                                         | $HO_{2}C$ $+ 0$ $HO_{2}C$ $HO_{1}C$ $HO_{2}C$ $HO_{1}C$ $HO_{2}C$ $HO_{1}C$ $HO_{2}C$ |       |       |
| 189             | O'COH                                                                               | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, CH <sub>3</sub> OH–H <sub>2</sub> O, 9 h, 15° | OH OH                                                                                                                                                                           | (43)  | 433   |
| C <sub>16</sub> | C <sub>6</sub> H <sub>5</sub> CH=C(C <sub>6</sub> H <sub>5</sub> )COCH <sub>5</sub> | PBA, CHCl <sub>3</sub> , 27°                                                            | $C_6H_5CO_2H + C_6H_5CHO$ (12) (3) + C_6H_5COCHOHC_6H_5 + C_6H_5COCH                                                                                                            | 2C6H5 | 485   |
|                 | C <sub>6</sub> H <sub>3</sub> CH=C(CH <sub>3</sub> )COC <sub>6</sub> H <sub>5</sub> | PBA, CHCl <sub>3</sub> , 118 h, 25°                                                     | $\begin{array}{c} (14) & (71) \\ C_6H_5CHO + C_6H_5CO_2H + C_6H_5OH \\ (59) & (78) & (16) \end{array}$                                                                          | (55)* | 485   |

TABLE V. REACTIONS OF a, &-UNSATURATED KETONES (Continued)



| TADIEV   | Drugmon on a O Lingunus and   | Verouse | Continued | • |
|----------|-------------------------------|---------|-----------|---|
| IADLE V. | REACTIONS OF a, p-UNSATURATED | RETONES | Continueu | , |



TABLE V. REACTIONS OF a, &-UNSATURATED KETONES (Continued)

| Reactant                             | Conditions                                                                                                                           | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Refs.  |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|                                      | <ol> <li>50% H<sub>2</sub>O<sub>2</sub>, SeO<sub>2</sub>, <i>t</i>-BuOH, 7 h, reflux</li> <li>CH<sub>2</sub>N<sub>2</sub></li> </ol> | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} $ $ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ $ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ $ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ $ \begin{array}{c} \end{array} \\ \end{array} $ $ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ $ \end{array} $ } $ \end{array} $ } $ \end{array} $ } $ \end{array} $ }   }  }   }   }  }  }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3) 101 |
| CH <sub>3</sub> CO <sub>2</sub><br>H | MCPBA, NaHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> -ether, 25°                                                              | $\begin{pmatrix} CH_3CO_2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7) 519 |
| O <sub>2</sub> CCH <sub>3</sub>      | MCPBA (2 eq), HClO4, CHCl3, 12 h, 25°                                                                                                | $+ \underbrace{-}_{H} II$ $I:II = 45:55$ $\underbrace{+}_{H} + \underbrace{-}_{H} II$ $\underbrace{+}_{H} + \underbrace{-}_{H} II$ $\underbrace{+}_{H} + \underbrace{-}_{H} II$ $\underbrace{+}_{H} II$ $\underbrace{+}_{$ | 508    |
|                                      | PBA (4 eq), HClO4, CHCl3, 84 h, 25°                                                                                                  | $+ \underbrace{O}_{O} \underbrace{O}_{CHO} + HO_{2}C(CH_{2})_{2} \underbrace{O}_{H} + HO_{2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 508    |
| $O_{H}$                              | 50% H <sub>2</sub> O <sub>2</sub> , SeO <sub>2</sub> , t-BuOH, 16 h, reflux                                                          | $(9) \qquad (9)$ $+ \underbrace{O}_{O} \underbrace{O}_{O}_{O}CH$ $(6) \qquad (6)$ $HO_{2}CCH_{2} \underbrace{H}_{H} + \underbrace{O}_{H} \underbrace{H}_{H}$ $HO_{2}CCH_{2} \underbrace{H}_{H} + \underbrace{O}_{H} \underbrace{H}_{H}$ $(51) \qquad (4)$ $+ O = \underbrace{O}_{H} \underbrace{H}_{H}$ $(50)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 505    |

TABLE V. REACTIONS OF a, &-UNSATURATED KETONES (Continued)

| _        | Reactant                                                                                                 | Conditions                                                                                                                                                                                                                   | Product(s) and Yield(s) (%)                                      |               | Refs.    |
|----------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------|----------|
|          | CH3CO                                                                                                    | МСРВА, H₂SO4, CHCl <sub>3</sub> , 72 h, 25°                                                                                                                                                                                  | O H H H H                                                        | (44)<br>(36)* | 488      |
| 68<br>88 | H                                                                                                        | 30% H2O2, NaOH, C2H3OH, 40 h, 25°                                                                                                                                                                                            | CO <sub>2</sub> H<br>N<br>COCH <sub>2</sub><br>CO <sub>2</sub> H | (82)          | 520      |
|          | H N<br>H                                                                                                 | 30% H2O2, NaOH, C2H3OH, 15 h, 5°                                                                                                                                                                                             | N<br>COCH <sub>2</sub>                                           | (60)          | 520      |
|          | BnOCH <sub>2</sub> O<br>O<br>H<br>O                                                                      | H <sub>2</sub> O <sub>2</sub> (anh), Ti(OC <sub>3</sub> H <sub>7</sub> - <i>i</i> ) <sub>4</sub> , ether,<br>( <i>i</i> -C <sub>3</sub> H <sub>7</sub> ) <sub>2</sub> NC <sub>2</sub> H <sub>5</sub> , 15 min, $-30^{\circ}$ | BnOCH <sub>2</sub> O<br>O<br>H<br>O<br>O                         | (55)          | 236      |
|          | O <sub>2</sub> CC <sub>2</sub> H <sub>5</sub>                                                            | <ol> <li>K<sub>2</sub>SO<sub>5</sub>, H<sub>2</sub>SO<sub>4</sub>, AcOH, 7 d, 25°</li> <li>Saponification</li> </ol>                                                                                                         |                                                                  | (26)          | 507      |
| 689      |                                                                                                          | H <sub>2</sub> O <sub>2</sub> , SeO <sub>2</sub> , <i>t</i> -C <sub>4</sub> H <sub>9</sub> OH                                                                                                                                | $HO_2C(CH_2)_2$                                                  | (72)          | 101, 515 |
| 6        | C <sub>2</sub> H <sub>5</sub><br>H C <sub>2</sub> H <sub>5</sub><br>OH O H C <sub>2</sub> H <sub>5</sub> | H<br>H <sub>5</sub> TFPAA (90%), Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , several min                                                                                                            | $HO_2C$ $H$ $C_2H_5$ $H$ $C_2H_5$ $C_2H_5$                       | (79)          | 80       |
| 023      |                                                                                                          | $K_2S_2O_8$ , $H_2SO_4$ , AcOH, 24 h, 17°                                                                                                                                                                                    | C C C C C C C C C C C C C C C C C C C                            | (19)<br>(30)* | 486      |

## TABLE V. REACTIONS OF $\alpha,\beta$ -UNSATURATED KETONES (Continued)

|                                     |                                 | TABLE V. REACTIONS OF $\alpha,\beta$ -Unsaturated Keton                      | NES (Continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|-------------------------------------|---------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                                     | CH <sub>3</sub> CO <sub>2</sub> | Conditions                                                                   | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Refs.        |
| of                                  | H<br>H<br>H<br>H                | H <sub>2</sub> O <sub>2</sub> , SeO <sub>2</sub> , t-BuOH, 7 h, reflux       | $ \begin{array}{c} \begin{array}{c} H \\ H $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80) 101, 515 |
| сн <sub>з</sub> с<br>с <sub>л</sub> |                                 | PBA, H <sub>2</sub> SO <sub>4</sub> , AcOH, 14 d, 25°                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16) 518      |
| $\bigcirc$                          |                                 | PBA (2.5 eq), TsOH, CHCl <sub>3</sub> , 24 h, 25°                            | (41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 503          |
|                                     |                                 | 30% H <sub>2</sub> O <sub>2</sub> , 98% HCO <sub>2</sub> H, 3 h, 40°         | (10) H + (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 503          |
|                                     | H<br>H<br>H<br>H                | PBA (1 eq), TsOH, CHCl <sub>3</sub> (CH <sub>3</sub> OH trace),<br>60 h, 25° | + HCO <sub>2</sub><br>HO<br>(23)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H)<br>(H) | 25)* 303     |
| 69                                  | 0                               |                                                                              | H = H = H = H = H = H = H = H = H = H =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H<br>H<br>H  |
|                                     |                                 | <b>PBA</b> (2.5 eq), TsOH, CHCl <sub>3</sub> , 96 h, 25°                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25)* 303     |
|                                     |                                 |                                                                              | IV<br>(38) (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |

| Reactant | Conditions                                                                         | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Refs.              |
|----------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|          | PBA, TsOH, CHCl <sub>3</sub> , 8 h, 25°                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (71) 303           |
|          | PBA (1–2 eq), TsOH, 140 h, 25°                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H<br>H<br>513<br>0 |
|          |                                                                                    | $(3) \qquad (3)$ $+ (1) + \underbrace{(1) $ |                    |
|          | PBA (3 eq), TsOH, CHCl3, 8 h, 25°                                                  | $I-IV + \underbrace{H}_{H} \underbrace{H}_{H}_{H} \underbrace{H}_{H}_{H}$ $(-)  (2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 513                |
|          | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 75 min |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (—) 506            |
|          | PBA, TsOH, CHCl3 (CH3OH), 6 d, 25°                                                 | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 516                |
|          | K <sub>2</sub> SO <sub>5</sub> , H <sub>2</sub> SO <sub>4</sub> , AcOH, 7 d, 25°   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (35) 507           |
|          |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |



TABLE V. REACTIONS OF a, B-UNSATURATED KETONES (Continued)



TABLE V. REACTIONS OF a, &-UNSATURATED KETONES (Continued)



|                 | Reactant                                               | Conditions                                          | Product(s) and Yield(s) (%)                                                   | Refs. |
|-----------------|--------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------|-------|
|                 |                                                        | MCPBA (2.5 eq), TsOH, CHCl <sub>3</sub> , 45 h, 25° | $III + IV + \underbrace{H}_{CH_3CO_2} \underbrace{H}_{CO_2H}$                 | 501   |
|                 |                                                        | PBA (1 eq), TsOH, CHCl <sub>3</sub> , 48 h, 25°     | (13) (26) $V$<br>(14)<br>(14)<br>(14)<br>(14)<br>(14)<br>(14)<br>(14)<br>(14) | 504   |
|                 | H<br>H<br>H<br>O<br>O<br>C <sub>2</sub> H <sub>5</sub> | PBA (2 eq), TsOH, CHCl3, 48 h, 25°                  | $ \begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\$         | 504   |
| C <sub>30</sub> |                                                        | PBA (1 eq), CHCl3, 45 h, 25°                        | $ \begin{array}{c}                                     $                      | 502   |
|                 |                                                        | PBA, CHCl <sub>3</sub> , 48 h, 5°                   | O = O + H + O + H + O + O + H + O + O + O +                                   | 502   |

TABLE V. REACTIONS OF  $\alpha, \beta$ -UNSATURATED KETONES (Continued)

TABLE V. REACTIONS OF  $\alpha,\beta$ -UNSATURATED KETONES (Continued)



| Reactant   | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      | Refs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CH3COCOCH3 | 99% MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 25°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (CH <sub>3</sub> CO) <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (100)                                                | 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| €,         | H <sub>2</sub> O <sub>2</sub> (anh), ether–CHCl <sub>3</sub> , 15 h, –5°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      | 530, 536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | 30% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , AcOH, 2 h, 25–35° to<br>60–70° maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (5-15) (20-25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (90)                                                 | 541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | K <sub>2</sub> S <sub>2</sub> O <sub>8</sub> , 85–95% H <sub>2</sub> SO <sub>4</sub> , a few min, 0–10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (95)                                                 | 541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | 30% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , AcOH, 2 h, 25–35° to<br>60–70° maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F C N O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (83)                                                 | 541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | 30% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , AcOH, 2 h, 25–35° to<br>60–70° maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F H O H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (84)                                                 | 541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | 30% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , AcOH, 2 h, 25–35° to<br>60–70° maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (85)                                                 | 541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | 30% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , AcOH, 2 h, 25–35° to<br>60–70° maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Br O<br>N O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (83)                                                 | 541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | K <sub>2</sub> S <sub>2</sub> O <sub>8</sub> , 85–95% H <sub>2</sub> SO <sub>4</sub> , a few min, 0–10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (95)                                                 | 541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | 30% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , AcOH, 2 h, 25–35° to<br>60–70° maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | O <sub>2</sub> N O<br>N O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (80)                                                 | 541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | CH,COCOCH,<br>$( \downarrow \downarrow_{0}^{0} \\ ( \downarrow \downarrow_{0}^{-}) \\ ( \downarrow \downarrow_{0}^$ | CH <sub>2</sub> COCOCH <sub>3</sub><br>$ggg MCPBA, CH_2Cl_2, 25^{\circ}$<br>$(\zeta + \zeta_0^{\circ})$<br>$H_2O_2 (anh), ether-CHCl_3, 15 h, -5^{\circ}$<br>$Cl_{\zeta + \zeta + \zeta_0^{\circ}}$<br>$Gl_{\zeta + \zeta + \zeta_0^{\circ}}$<br>$Gl_{\zeta + \zeta_0^{\circ}}$<br>$H_2O_2 (anh), ether-CHCl_3, 15 h, -5^{\circ}$<br>$Gl_{\zeta - 70^{\circ}}$ maximum<br>$K_2S_2O_8, 85 - 95\% H_2SO_4, AcOH, 2 h, 25 - 35^{\circ} to$<br>$Gl_{\zeta - 70^{\circ}}$ maximum<br>$fl_{\zeta + \zeta_0^{\circ}}$<br>$fl_{\zeta + \zeta_0^{\circ}}$<br>$Gl_{\zeta + H}^{\circ}$<br>$Gl_{\zeta + H}^{\circ}$ | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | $\begin{array}{cccc} CH_{*}COCOCCH_{*} & 99\% \ MCPBA, \ CH_{*}Cl_{*}, 25^{*} & (CH_{*}CO)_{*}O & (100) \\ \\ (\zeta + \int_{0}^{0} & H_{*}O_{*}(anh), \ ether-CHCl_{*}, 15 \ h_{*}, -5^{*} & \begin{pmatrix} CO_{*}H \\ CO_{*$ |

TABLE VI. REACTIONS OF 1,2-DICARBONYL COMPOUNDS

| _  | Reactant                                                 | Conditions                                                                                                  | Product(s) and Yield(s) (%)                                                                           |       | Refs. |  |
|----|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------|-------|--|
|    |                                                          | 30% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , AcOH, 2 h, 25–35° to<br>60–70° maximum | C N O                                                                                                 | (79)  | 541   |  |
|    |                                                          | K <sub>2</sub> S <sub>2</sub> O <sub>8</sub> , 85–95% H <sub>2</sub> SO <sub>4</sub> , a few min, 0–10°     |                                                                                                       | (95)  | 541   |  |
|    | XX°                                                      | MPPA, ether, 4 d, 0°                                                                                        | X Co                                                                                                  | ()    | 527   |  |
|    | A Co                                                     | H <sub>2</sub> O <sub>2</sub> , AcOH                                                                        | HO <sub>2</sub> C CO <sub>2</sub> H                                                                   | (67)  | 535   |  |
|    | C Co                                                     | 99% MCPBA, CH2Cl2, 25°                                                                                      | €<br>°                                                                                                | (100) | 218   |  |
|    | Ľ.                                                       | H <sub>2</sub> O <sub>2</sub> , NaOH                                                                        | HO <sub>2</sub> CC(CH <sub>3</sub> ) <sub>2</sub> OC(CH <sub>3</sub> ) <sub>2</sub> CO <sub>2</sub> H | (—)   | 534   |  |
| C, | $ \begin{array}{c}                                     $ | 30% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , AcOH, 2 h, 25–35° to<br>60–70° maximum | $ \begin{array}{c} 0 \\ 0 \\ 0 \\ CF_3 \\ H \end{array} $                                             | (81)  | 541   |  |
|    |                                                          | K <sub>2</sub> S <sub>2</sub> O <sub>8</sub> , 85–95% H <sub>2</sub> SO <sub>4</sub> , a few min, 0–10°     | $ \begin{array}{c}                                     $                                              | (82)  | 541   |  |
|    |                                                          | 30% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , AcOH, 2 h, 25–35° to<br>60–70° maximum |                                                                                                       | (75)  | 541   |  |
|    |                                                          | K <sub>2</sub> S <sub>2</sub> O <sub>8</sub> , 85–95% H <sub>2</sub> SO <sub>4</sub> , a few min, 0–10°     |                                                                                                       | (89)  | 541   |  |
|    |                                                          | H <sub>2</sub> O <sub>2</sub> , AcOH                                                                        | HO <sub>2</sub> C<br>CO <sub>2</sub> H                                                                | (53)  | 535   |  |
|    | °<br>°                                                   | 99% MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 25°                                                            |                                                                                                       | (100) | 218   |  |

|     | Reactant                                                                                        | Conditions                                                                                                                           | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                        |                                            | Refs. |
|-----|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------|
| C10 |                                                                                                 |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |       |
|     | CL <sup>®</sup>                                                                                 | H <sub>2</sub> O <sub>2</sub> , 75% HCO <sub>2</sub> H, NaOH, 1 h, 23°                                                               | CO <sub>2</sub> H<br>CO <sub>2</sub> H                                                                                                                                                                                                                                                                                                                                                             | (54)                                       | 31    |
|     |                                                                                                 | K <sub>2</sub> S <sub>2</sub> O <sub>8</sub> , 85–95% H <sub>2</sub> SO <sub>4</sub> , a few min, 0–10°                              |                                                                                                                                                                                                                                                                                                                                                                                                    | (90)                                       | 541   |
|     |                                                                                                 | 30% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , AcOH, 2 h, 25–35° to<br>60–70° maximum                          |                                                                                                                                                                                                                                                                                                                                                                                                    | (70)                                       | 541   |
|     | CD3<br>Ko                                                                                       | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, 42 h, 25°                                                                                  | CO <sub>2</sub> H<br>CD <sub>3</sub><br>CO <sub>2</sub> H                                                                                                                                                                                                                                                                                                                                          | (94)                                       | 533   |
|     | 2                                                                                               | MCPBA, CHCl <sub>3</sub> , 25°                                                                                                       | of A                                                                                                                                                                                                                                                                                                                                                                                               | ()                                         | 490   |
|     | ℓ-C4H9 0                                                                                        | 85% MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 5–10 min, 0°                                                                            | 1-C4H9                                                                                                                                                                                                                                                                                                                                                                                             | (64)                                       | 526   |
|     | A.                                                                                              | CAN, CH <sub>3</sub> OH, 30 min, 25°                                                                                                 | $\underbrace{\swarrow}_{(63)}^{\text{CO}_2\text{CH}_3} + \underbrace{\swarrow}_{(20)}^{\text{CO}_2\text{CH}_3}$                                                                                                                                                                                                                                                                                    |                                            | 691   |
| Cu  |                                                                                                 |                                                                                                                                      | + $CH_{3}O_{2}CH_{3} + CH_{3}O_{2}C_{2}CH_{3}$ + $CH_{3}O_{2}C_{2}C_{2}CH_{3}$ (12)                                                                                                                                                                                                                                                                                                                | (4)                                        | Н3    |
|     | OCH3                                                                                            | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 5–10 min, 0°                                                                                | CH30                                                                                                                                                                                                                                                                                                                                                                                               | (52)                                       | 526   |
|     | 1-C4H9 0                                                                                        |                                                                                                                                      | 1-C4H9                                                                                                                                                                                                                                                                                                                                                                                             |                                            |       |
|     | <i>p</i> -FC <sub>6</sub> H₄COP(O) (OC <sub>2</sub> H <sub>5</sub> ) <sub>2</sub>               | PBA, C <sub>6</sub> H <sub>6</sub> or CH <sub>3</sub> CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> , 3–5 d, 32°, or<br>13–16 d, 25° | p-FC <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> P(O) (OC <sub>2</sub> H <sub>5</sub> ) <sub>2</sub><br>+ $p$ -FC <sub>6</sub> H <sub>4</sub> CO <sub>4</sub> CC <sub>6</sub> H <sub>5</sub><br>+ C <sub>2</sub> H <sub>5</sub> O <sub>2</sub> CC <sub>6</sub> H <sub>5</sub><br>+ $p$ -FC <sub>6</sub> H <sub>4</sub> CO <sub>3</sub> CC <sub>6</sub> H <sub>5</sub><br>+ $(c_{1}+c_{2})$ -P(O)OH | (70-85)<br>(2-4)<br>(2-6)<br>(10-20)       | 544   |
|     | <i>m</i> -ClC <sub>6</sub> H <sub>4</sub> COP(O) (OC <sub>2</sub> H <sub>5</sub> ) <sub>2</sub> | PBA, C <sub>6</sub> H <sub>6</sub> or CH <sub>3</sub> CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> , 3−5 d, 32°, or<br>13−16 d, 25° | $m-ClC_{6}H_{4}CO_{2}P(O) (OC_{2}H_{5})_{2}$<br>+ m-ClC_{6}H_{4}CO_{4}CC_{6}H_{5}<br>+ C_{2}H_{3}O_{2}CC_{6}H_{5}<br>+ m-ClC_{6}H_{4}CO_{3}CC_{6}H_{5}<br>+ (C_{2}H_{3}O)_{2}P(O)OH                                                                                                                                                                                                                | (70-85)<br>(2-4)<br>(2-6)<br>(10-20)<br>() | 544   |

TABLE VI. REACTIONS OF 1,2-DICARBONYL COMPOUNDS (Continued)

Conditions Reactant Product(s) and Yield(s) (%) Refs. C6H5COP(O) (OC2H5)2 PBA, benzene or CH3CO2C2H5, 3-5 d, 32°, or C6H5CO2P(O) (OC2H5)2 (70-85) 544 + C6H5CO4CC6H5 13-16 d, 25° (2-4) + C2H5O2CC6H5 (2-6) + C6H5CO3CC6H5 (10-20) + (C2H3O)2P(O)OH (-) 0 1-C4H9O2CCO OCH<sub>3</sub> 1-C4H9O2CCO2 OCH<sub>3</sub> 710 MCPBA, CH<sub>2</sub>Cl<sub>2</sub> 542 (--) C12 HO<sub>2</sub>C CO<sub>2</sub>CH<sub>3</sub> MCPBA, HCl, CH<sub>3</sub>OH, 2 h, 25° (70) 539 CO<sub>2</sub>H 530 (78) H2O2(anh), ether-CHCl3, 7 d, -5° CO<sub>2</sub>H CO<sub>2</sub>H CO<sub>2</sub>H CH<sub>3</sub>O<sub>2</sub>CCO<sub>2</sub> CH<sub>3</sub>O<sub>2</sub>CCO CO2CH3 CO2CH3 542, 543 MCPBA, CHCl3 (>77) 0 p-CH3OC6H4COP(O) (OC2H5)2 PBA, CH3CO2C2H5, 13-16 d, 25° p-CH3OC6H4CO2P(O) (OC2H5)2 (70-85) 544 + p-CH3OC6H4CO4CC6H5 (2-4) + C2H3O2CC6H3 (2-6) (10-20) + p-CH<sub>3</sub>OC<sub>6</sub>H<sub>4</sub>CO<sub>3</sub>CC<sub>6</sub>H<sub>5</sub> + (C2H5O)2P(O)OH (--) C14 NO<sub>2</sub> 0 0 OH CO<sub>2</sub>H H<sub>2</sub>O<sub>2</sub>, CH<sub>3</sub>OH, +64° to -53° 540 O<sub>2</sub>N NO2 NO<sub>2</sub> O<sub>2</sub>N O2N NO<sub>2</sub> NO<sub>2</sub> 711 (30-60) (16-66) H2O2, HCO2H-THF-H2O, 1 h, 23° (-) 31 CO<sub>2</sub>H CO<sub>2</sub>H ö C6H5COCOC6H5 t-BuO<sub>2</sub>H, KOH, 80° C6H5CO2H (16) 532, 538 (80)\*

TABLE VI. REACTIONS OF 1,2-DICARBONYL COMPOUNDS (Continued)



TABLE VI. REACTIONS OF 1,2-DICARBONYL COMPOUNDS (Continued)

Reactant Conditions Product(s) and Yield(s) (%) Refs. C17 HO<sub>2</sub>C CO<sub>2</sub>H PAA, AcOH, 3.5 h, 80-90° 537 O2CCH3 CH3O CH<sub>3</sub>O O2CCH3 O2CCH3 CH<sub>3</sub>O (74) (13) C19 HO2 714 HO<sub>2</sub>O (2) 522 MCPBA, CH<sub>2</sub>Cl<sub>2</sub> C29 30% H2O2, SeO2, t-BuOH, 15 h, reflux (8) 529 HO<sub>2</sub>CCH<sub>2</sub> Ĥ Ĥ HO2CCH2 H Ĥ

TABLE VI. REACTIONS OF 1,2-DICARBONYL COMPOUNDS (Continued)

| Reactant    | Conditions                                                                                                                                                                                                                                                                                   | Product(s) and Yield(s) (%)                                        |         | Refs.    |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------|----------|
| 5           |                                                                                                                                                                                                                                                                                              |                                                                    |         |          |
| Сно         | 30% H <sub>2</sub> O <sub>2</sub> , HCO <sub>2</sub> H, CH <sub>2</sub> Cl <sub>2</sub> , Na <sub>2</sub> SO <sub>4</sub> ,<br>14 h, 25°                                                                                                                                                     |                                                                    | (21–26) | 616      |
|             | 1. 30% H <sub>2</sub> O <sub>2</sub> , HCO <sub>2</sub> H, CH <sub>2</sub> Cl <sub>2</sub> ,<br>Na <sub>2</sub> SO <sub>4</sub> , K <sub>2</sub> CO <sub>3</sub> , 14 h, 25°<br>2. (C <sub>2</sub> H <sub>5</sub> ) <sub>3</sub> N, C <sub>6</sub> H <sub>5</sub> CH <sub>3</sub> , 1 h, 25° | $\overline{\langle } \rangle_{0}$                                  | (50–54) | 616      |
| 6<br>D-     |                                                                                                                                                                                                                                                                                              | B-                                                                 |         |          |
| СНО         | 30% H <sub>2</sub> O <sub>2</sub> , HCO <sub>2</sub> H, CH <sub>2</sub> Cl <sub>2</sub> ,<br>Na <sub>2</sub> SO <sub>4</sub> , 24 h, 25°                                                                                                                                                     |                                                                    | (69)    | 617      |
| СНО         | 30% H <sub>2</sub> O <sub>2</sub> , 0–90°                                                                                                                                                                                                                                                    | HO <sub>2</sub> C(CH <sub>2</sub> ) <sub>4</sub> CO <sub>2</sub> H | (90)    | 203, 624 |
| 7           |                                                                                                                                                                                                                                                                                              |                                                                    |         |          |
| CI CHO      | 6% H <sub>2</sub> O <sub>2</sub> , NaOH, 12 h, 40-60°                                                                                                                                                                                                                                        | CI OH<br>CI OH<br>CI OH                                            | (—)     | 545      |
| p-ClC₀H₄CHO | 31% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , CH <sub>3</sub> OH,<br>24 h, reflux                                                                                                                                                                                     | p-ClC <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> CH <sub>3</sub>  | (87)    | 579      |
| СНООН       | 3% H <sub>2</sub> O <sub>2</sub> , NaOH, 15 min, 25°                                                                                                                                                                                                                                         | OH<br>OH<br>Br                                                     | (75)    | 546      |

## TABLE VII. REACTIONS OF ALDEHYDES

| Keactant                                        | Conditions                                                                                 | Product(s) and Yield(s) (%)                                              |       | Refs.      |
|-------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------|------------|
| OH CHO                                          |                                                                                            | OH                                                                       |       |            |
| Chu                                             | 6% H <sub>2</sub> O <sub>2</sub> , NaOH, 12 h, 40-60°                                      | U OH                                                                     | (67)  | 545        |
| p-O2NC6H4CHO                                    | 31% H2O2, H2SO4, CH3OH, 24 h,                                                              | p-O2NC6H4CO2CH3                                                          | (80)  | 579        |
| C <sub>6</sub> H <sub>5</sub> CHO               | KHSO <sub>5</sub> , H <sub>2</sub> O, CHCl <sub>3</sub> , H <sub>2</sub> SO <sub>4</sub> , | C6H5CO2H                                                                 | (49)  | 574, 58    |
|                                                 | 3% H <sub>2</sub> O <sub>2</sub> , NaOH, 1 h, heat                                         | С6Н3ОН                                                                   | (0.5) | 546        |
|                                                 | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , argon, 25°                                        |                                                                          |       | 614        |
| o-HOC₄H₄CHO                                     | 3% H <sub>2</sub> O <sub>2</sub> , NaOH, 45 min, 15°                                       | (42) (32)<br>∞-HOC6H4OH                                                  | (96)  | 96, 546,   |
|                                                 | KHSO <sub>5</sub> , H <sub>2</sub> O, CHCl <sub>3</sub> , H <sub>2</sub> SO <sub>4</sub> , |                                                                          | (12)  | 547<br>574 |
| <i>p</i> -HOC₀H₄CHO                             | 8 n, 25°<br>3% H <sub>2</sub> O <sub>2</sub> , NaOH, 30 min, 20°                           | <i>p</i> -HOC₄H₄OH                                                       | (83)* | 96, 546,   |
| сно                                             |                                                                                            | он                                                                       |       | 548        |
| $\widehat{\Box}$                                | 3% H2O2, NaOH, 1.5 h, 0°                                                                   | $\bigcirc$                                                               | (64)  | 96         |
| ОН                                              |                                                                                            | ОН                                                                       |       |            |
| C <sub>2</sub> H <sub>5</sub> CD <sub>2</sub> H |                                                                                            | C2H5 CD2H                                                                |       |            |
| OHC CD3                                         | МСРВА                                                                                      | HCO <sub>2</sub> CD <sub>3</sub>                                         | (—)   | 620        |
| Сно                                             | H <sub>2</sub> O <sub>2</sub> , Cold                                                       | HO <sub>2</sub> C(CH <sub>2</sub> ) <sub>5</sub> CO <sub>2</sub> H<br>I  | ()    | 624        |
|                                                 | 30% H <sub>2</sub> O <sub>2</sub> , 20 min, 25°                                            | $I + \bigcirc^{CO_2H}$                                                   |       | 202, 203   |
|                                                 | 1. 30% H <sub>2</sub> O <sub>2</sub> , <i>t</i> -BuOH, 50-55°<br>2. 12 h, 25°              | $ \begin{array}{c} 11 \\ (35) \\ 1 \\ (41) \\ (41) \\ (26) \end{array} $ |       | 78         |
| СНО                                             | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 2 h, 25°       | + $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$                                    |       | 589, 619   |
| сно                                             |                                                                                            | (74) (19)<br>СО2Н ОН                                                     |       |            |
| O Br                                            | 35% H <sub>2</sub> O <sub>2</sub> , 85% HCO <sub>2</sub> H, 4 h, 0°                        | O = O = Br + O = O = Br                                                  | (79)  | 602, 603   |
| СНО                                             | MCPBA, CHCl <sub>3</sub> , 90 min, heat                                                    | I II<br>II<br>OH CO2H                                                    | (93)  | 586        |
|                                                 | 20% PAA, AcOH, 24 h, 25°                                                                   |                                                                          |       | 605        |

| Reactant                                            | Conditions                                                                                                                                                                                                                                   | Product(s) and Yield(s) (%)                                                      |                       | Refs.             |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------|-------------------|
|                                                     | MCPBA, KF, $CH_2Cl_2$<br>30% $H_2O_2$ , (o- $O_2NC_6H_4Se_2$ ,<br>$CH_2Cl_2$ , 45 h, 25°                                                                                                                                                     | I<br>I<br>ÇO2CH3                                                                 | (95)<br>(88)          | 575<br>578        |
|                                                     | 31% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , CH <sub>3</sub> OH,<br>24 h, 25°                                                                                                                                        |                                                                                  | (8)                   | 579               |
| CHO                                                 | 1. МСРВА<br>2. КОН                                                                                                                                                                                                                           | OH<br>OH                                                                         | (65)                  | 587               |
| OH<br>CHO<br>CI                                     | 6% H <sub>2</sub> O <sub>2</sub> , NaOH, 12 h, 40–60°                                                                                                                                                                                        | ОН                                                                               | (72)                  | 545               |
| CHO<br>OCH3                                         | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 12 h, heat                                                                                                                                                                                          | OH<br>OCH <sub>3</sub>                                                           | (73)                  | 588               |
| C <sub>6</sub> H <sub>3</sub> CH <sub>2</sub> CHO   | PAA, TFAA, 2 h, 25°                                                                                                                                                                                                                          | $C_6H_5CH_2O_2CH + C_6H_5CH_2CO_2H$ (81) (11)                                    |                       | 589               |
| p-CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> CHO | 31% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , CH <sub>3</sub> OH,                                                                                                                                                     | $p-CH_3C_6H_4OH + p-CH_3C_6H_4CO_2CH_3$ (28) (51)                                |                       | 579, 1090         |
| <i>₀</i> -СН₃С <sub>6</sub> Н₄СНО                   | 30% H <sub>2</sub> O <sub>2</sub> , (o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>27 h, 25°                                                                                       | o-CH₃C₅H₄OH                                                                      | (94)                  | 578               |
| <i>p</i> -CH₃OC₀H₄CHO                               | 3% H <sub>2</sub> O <sub>2</sub> , NaOH, 1 h, heat                                                                                                                                                                                           | <i>p</i> -CH₃OC₅H₄OH<br>I                                                        | (0.8)                 | 546               |
|                                                     | 31% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , CH <sub>3</sub> OH, 24 h,<br>reflux                                                                                                                                     | 1                                                                                | (90)                  | 579               |
|                                                     | MCPBA, $CH_2Cl_2$ , 5 h, reflux<br>30% $H_2O_2$ , ( $o$ - $O_2NC_6H_4Se$ ) <sub>2</sub> ,<br>$CH_2Cl_2$ , 30 h 25°                                                                                                                           | <i>р</i> -CH₃OC₀H₄O₂CH<br>I                                                      | (92)<br>(93)          | 584, 589<br>578   |
| <i>m</i> -CH₃OC₀H₄CHO                               | MCPBA, $CH_2Cl_2$ , 29 h, reflux<br>30% $H_2O_2$ , $[2,4:(O_2N)_2C_6H_3Se]_2$ ,<br>$CH_2Cl_2$ , 123 h 25°                                                                                                                                    | m-CH3OC6H4O2CH<br>m-CH3OC6H4OH                                                   | (31)<br>(14)          | 584<br>578        |
|                                                     | 31% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , CH <sub>3</sub> OH,                                                                                                                                                     | m-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> CH <sub>3</sub> | (68)                  | 579               |
| <i>о</i> -CH₃OC <sub>6</sub> H₄CHO                  | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 18.5 h, reflux<br>TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 1 h<br>31% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , CH <sub>3</sub> OH, 24 h. | о-CH₃OC₀H₄O₂CH<br>о-CH₃OC₀H₄OH<br>″                                              | (>60)<br>(81)<br>(94) | 584<br>589<br>579 |
|                                                     | reflux<br>30% $H_2O_2$ , ( $e-O_2NC_6H_4Se$ ) <sub>2</sub> ,<br>CH-Cl- 12 b 25°                                                                                                                                                              |                                                                                  | (93)                  | 578               |
| CHO                                                 | Grifold, 12 H, 25                                                                                                                                                                                                                            | ОН                                                                               |                       |                   |
| OCH <sub>3</sub>                                    | 6% H <sub>2</sub> O <sub>2</sub> , NaOH, 1 h, 40-50°                                                                                                                                                                                         | OCH <sub>3</sub>                                                                 | (68–80)               | 549               |
| СНО                                                 |                                                                                                                                                                                                                                              | ОН                                                                               |                       |                   |
| ОН                                                  | PAA, 12 h, 40°                                                                                                                                                                                                                               | ОН                                                                               | (74)                  | 606               |
| OCH <sub>3</sub>                                    | MCPBA, KF, CH <sub>2</sub> Cl <sub>2</sub>                                                                                                                                                                                                   | ОСН <sub>3</sub>                                                                 | (79)                  | 575               |
|                                                     |                                                                                                                                                                                                                                              |                                                                                  |                       |                   |

TABLE VII. REACTIONS OF ALDEHYDES (Continued)

| Reactant                  | Conditions                                             | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Refs.             |
|---------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| CHO<br>OCH                | 6% H <sub>2</sub> O <sub>2</sub> , NaOH, 1–2 h, 50°    | НО СН <sub>3</sub> О<br>НО СН <sub>3</sub> О<br>ОСН <sub>3</sub> ОН (58–60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) 550             |
| CHO<br>OCH3               | 3% H <sub>2</sub> O <sub>2</sub> , NaOH, 30 min, 20°   | OH<br>OCH <sub>3</sub> (97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) 96, 546,<br>551 |
|                           | MCPBA, KF, CH <sub>2</sub> Cl <sub>2</sub>             | I (77<br>I О, О2СН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ) 575             |
|                           | PAA, $H_2O$ , (pH = 3), 1 h, 60°                       | $I + \bigcup_{OCH_3} + \bigcup_{OH} OCH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 572               |
| Оггсно                    | 30% H <sub>2</sub> O <sub>2</sub> , 20 min, 25-30°     | (13) (11)<br>$-CO_2H + HO_2CCH(CH_3)(CH_2)_4CO_2H$ (52) (21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 202, 203          |
| Огсно                     | 30% H <sub>2</sub> O <sub>2</sub> , 20 min, 25–30°     | (32) (21)<br>$\sim \sim $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 203               |
| СНО                       | 30% H <sub>2</sub> O <sub>2</sub> , 20 min, 25-30°     | $\sum_{(30)} -CO_2H + CH_3CH(CH_2CH_2CO_2H)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 203               |
| СНО                       | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, 1 h, 20-25°  | $\bigcup_{r}^{O} + HO_2C(CH_2)_6CO_2H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 202, 204          |
| CH <sub>2</sub> CHO       | MCPBA, MCBA, CHCl <sub>3</sub> , 27°                   | (27) 	(33) 	(-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ) 619             |
| Co<br>O<br>O<br>Br<br>CHO | 35% H <sub>2</sub> O <sub>2</sub> , HCO <sub>2</sub> H | $(IIII) \rightarrow (III) \rightarrow (II$ | ) 603             |
| CHO<br>N<br>H             | 3% H <sub>2</sub> O <sub>2</sub> , NaOH, 10 min, 25°   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) 546             |
| оснз сно                  | 35% H-O- 85% HCO-H 5 b 0-5°                            | OCH3<br>OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) 602             |

| Reactant                                                              | Conditions                                                                                                                                             | Product(s) and Yield(s) (%)                                                    |      | Refs | i. |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------|------|----|
| C6H3COCH2CHO                                                          | 30% H <sub>2</sub> O <sub>2</sub> , KOH, 25-30°                                                                                                        | C6H3CO2H                                                                       | (41) | 203  |    |
| OH CHO                                                                |                                                                                                                                                        |                                                                                |      |      |    |
| Chu                                                                   | $H_2O_2$ , NaOH, 25°                                                                                                                                   | <b>F</b>                                                                       | (70) | 552  |    |
| OCO2CH3                                                               |                                                                                                                                                        | HO CO <sub>2</sub> CH <sub>3</sub>                                             |      |      |    |
| OCH3                                                                  |                                                                                                                                                        | OCH <sub>3</sub>                                                               |      |      |    |
| СНО                                                                   | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 48 h, reflux                                                                                                  | ↓ O₂CH                                                                         | (82) | 584  |    |
|                                                                       |                                                                                                                                                        | a                                                                              |      |      |    |
| H <sub>3</sub> O CHO                                                  |                                                                                                                                                        | CH30 OH                                                                        |      |      |    |
| XH30                                                                  | MCPBA, CHCl <sub>3</sub> , 45 min, reflux                                                                                                              | CH <sub>1</sub> 0                                                              | (82) | 585  |    |
| Br                                                                    |                                                                                                                                                        | Br                                                                             |      |      |    |
| ₄H₃CH(CH₃)CHO                                                         | TFPAA, Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 2 h, 25°                                                                   | $C_6H_5CH(CH_3)OH + C_6H_5CH(CH_3)CO_2H$<br>(84) (2)                           |      | 589  |    |
| H <sub>5</sub> (CH <sub>2</sub> ) <sub>2</sub> CHO                    | PAA, TFAA, 2 h, 25°                                                                                                                                    | $C_6H_5(CH_2)_2OH + C_6H_5(CH_2)_2CO_2H$                                       |      | 589  |    |
| C₂H₅OC₀H₄CHO                                                          | 30% H <sub>2</sub> O <sub>2</sub> , (o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 20 h, 25° | (11) (85)<br>∞-C <sub>2</sub> H <sub>5</sub> OC <sub>6</sub> H <sub>4</sub> OH | (93) | 578  |    |
| СНО                                                                   |                                                                                                                                                        | OH<br>A                                                                        |      |      |    |
|                                                                       | 3% H <sub>2</sub> O <sub>2</sub> , KOH, 15-40 min, 25°                                                                                                 |                                                                                | (91) | 548  |    |
| ОН                                                                    |                                                                                                                                                        | он                                                                             |      |      |    |
| СНО                                                                   | 6% H <sub>2</sub> O <sub>2</sub> , NaOH, 12 h, 40–60°                                                                                                  | ОН                                                                             | (71) | 545  |    |
| СНО                                                                   | 6% H <sub>2</sub> O <sub>2</sub> , NaOH, 12 h, 40-60°                                                                                                  | OH<br>OH                                                                       | (54) | 545  |    |
| СНО                                                                   | 6% H <sub>2</sub> O <sub>2</sub> , NaOH, 12 h, 40-60°                                                                                                  | OH<br>OH<br>OH                                                                 | (77) | 545  |    |
| CHO<br>OH<br>C <sub>2</sub> H <sub>5</sub>                            | 6% H <sub>2</sub> O <sub>2</sub> , NaOH, 12 h, 40–60°                                                                                                  | OH<br>OH<br>C <sub>2</sub> H <sub>5</sub>                                      | (67) | 545  |    |
| CHO                                                                   | 6% H2O2, NaOH, 12 h, 40-60°                                                                                                                            | OH                                                                             | (86) | 545  |    |
| C2H5                                                                  |                                                                                                                                                        | C <sub>2</sub> H <sub>5</sub>                                                  |      | 1.1  |    |
| (CH <sub>3</sub> OCH <sub>2</sub> O)C <sub>6</sub> H <sub>4</sub> CHO | 30% H <sub>2</sub> O <sub>2</sub> , (o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 9 h, 25°  | <i>о</i> -(CH₃OCH₂O)C <sub>6</sub> H₄OH                                        | (79) | 578  |    |
| СНО                                                                   |                                                                                                                                                        | OH CO <sub>2</sub> CH <sub>3</sub>                                             |      |      |    |
| CCH <sub>3</sub>                                                      | 31% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , CH <sub>3</sub> OH,<br>63 h. 25°                                                  | OCH <sub>3</sub> +                                                             |      | 579  |    |
| OCH3                                                                  |                                                                                                                                                        | OCH3 OCH3                                                                      |      |      |    |
|                                                                       |                                                                                                                                                        | I II<br>(30) (14)                                                              |      |      |    |
|                                                                       |                                                                                                                                                        |                                                                                |      |      |    |

| TABLE VII | REACTIONS   | OF AL DEHYDES | (Continued) | ŀ |
|-----------|-------------|---------------|-------------|---|
| INDLL VII | . REALTIONS | OF ALDERIDES  | (Commuea)   |   |

| Reactant                                                                                              | Conditions                                                                                                                                                                                                                                                  | Product(s) and Yield(s) (%)                                                                                                                                                | Refs.           |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                                                                                                       | 30% $H_2O_2$ , (o- $O_2NC_6H_4Se$ ) <sub>2</sub> ,<br>C $H_2Cl_2$ , 52 h, 25°                                                                                                                                                                               | 1 (95)<br>0 CTI                                                                                                                                                            | 578             |
| OCH3                                                                                                  | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 16 h, reflux                                                                                                                                                                                                       | OCH <sub>3</sub> (80)                                                                                                                                                      | 584             |
|                                                                                                       | 31% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , CH <sub>3</sub> OH,<br>14 h, 25°                                                                                                                                                       | OH<br>OCH <sub>3</sub><br>OCH <sub>3</sub><br>(90)                                                                                                                         | 579             |
|                                                                                                       | 30% H <sub>2</sub> O <sub>2</sub> , (o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 17 h, 25°                                                                                                      | I (95)                                                                                                                                                                     | 578             |
| CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O | MCPBA, CH2Cl2, 5 h, 25°                                                                                                                                                                                                                                     | CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>OCH <sub>3</sub> (90)                                                                                                            | 580             |
|                                                                                                       | 1. 30% H <sub>2</sub> O <sub>2</sub> , [2,4-(NO <sub>2</sub> ) <sub>2</sub> C <sub>6</sub> H <sub>3</sub> Se] <sub>2</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 25°<br>2. KOH, CH <sub>3</sub> OH, 1 h                                                    | CH <sub>3</sub> O<br>OCH <sub>3</sub> O<br>OCH <sub>3</sub> O                                                                                                              | 596             |
| CH30 CH0 OCH3                                                                                         | 30% H <sub>2</sub> O <sub>2</sub> , (o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 9 h, 25°                                                                                                       | CH <sub>3</sub> O<br>OCH <sub>3</sub> O<br>OCH <sub>3</sub> O<br>OCH <sub>3</sub> O<br>OCH <sub>3</sub> O<br>OCH <sub>3</sub> O                                            | 578             |
| CHO<br>OCH <sub>3</sub>                                                                               | PAA, H <sub>2</sub> O, pH 3, 1 h, 60°                                                                                                                                                                                                                       | $\bigcup_{\substack{OCH_3\\OCH_3}}^{OH} + \bigcup_{\substack{O2CH_3\\OCH_3}}^{O2CH} + \bigcup_{\substack{OCH_3\\OCH_3}}^{O} + \bigcup_{\substack{OCH_3\\OCH_3}}^{O} + (7)$ | • 572           |
|                                                                                                       | MCPBA, KF, CH <sub>2</sub> Cl <sub>2</sub><br>20% PAA, AcOH, 24 b, 25°                                                                                                                                                                                      | (12) (9) (6)<br>1 (90)<br>1 (63)                                                                                                                                           | 575, 584<br>605 |
| CHO                                                                                                   | 31% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , CH <sub>3</sub> OH, 5 h, 25°<br>30% H <sub>2</sub> O <sub>2</sub> , (o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>27 h, 25° | +(21)<br>I (60)<br>I (87)                                                                                                                                                  | 579<br>578      |
| CH30 OCH3                                                                                             | PAA, HClO <sub>4</sub> , AcOH, >15 min, 25°                                                                                                                                                                                                                 | CH <sub>3</sub> O OCH <sub>3</sub> (40                                                                                                                                     | 573             |
|                                                                                                       | PAA, H <sub>2</sub> O, pH 3, 1 h, 60°                                                                                                                                                                                                                       | I + OH<br>CH <sub>3</sub> O OCH <sub>3</sub> +(5                                                                                                                           | • 572           |
| <i>п</i> -C₄H₀CH(C₂H₅)CHO                                                                             | PAA, AcOH, 20 h, 20-25°                                                                                                                                                                                                                                     | (80) (4)<br>$n-C_4H_9CH(C_2H_3)O_2CH + n-C_4H_9CH(C_2H_3)CO_2H$<br>(25-30) (40)                                                                                            | 623             |

| TABLE VII. | REACTIONS OF ALDEHYDES (Continued) |  |
|------------|------------------------------------|--|

|                 | Reactant                                                                                                                                                   | Conditions                                                                                                                                                                                                                                                                          | Product(s) and Yield(s) (%)                                                                                   |              | Refs.           |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------|-----------------|
|                 | HO CHO<br>OCH <sub>3</sub>                                                                                                                                 | НСО₃Н, НСО₂Н                                                                                                                                                                                                                                                                        | HO OCH3                                                                                                       | ()           | 1091            |
|                 | СНО                                                                                                                                                        | 28% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> O, 12 h, 20°                                                                                                                                                                                                                     | + HO <sub>2</sub> CCH(CH <sub>3</sub> ) (CH <sub>2</sub> ) <sub>3</sub> CH(CH <sub>3</sub> )CO <sub>2</sub> H | (51)<br>(25) | 202, 204        |
| C <sub>10</sub> | CCC N CHO                                                                                                                                                  | 30% H <sub>2</sub> O <sub>2</sub> , (CH <sub>3</sub> ) <sub>2</sub> CO, 12 h, 25°                                                                                                                                                                                                   | + HO <sub>2</sub> CCH(CH <sub>3</sub> ) (CH <sub>2</sub> ) <sub>3</sub> CO <sub>2</sub> H<br>$CO_2H$          | (6)<br>(96)  | 618             |
|                 | CHO<br>CHO                                                                                                                                                 | 30% H <sub>2</sub> O <sub>2</sub> , 85% HCO <sub>2</sub> H, 24 h, 0°                                                                                                                                                                                                                | OH<br>OH                                                                                                      | (55)         | 604             |
|                 | CHO<br>OCH3                                                                                                                                                | 30% H <sub>2</sub> O <sub>2</sub> , 85% HCO <sub>2</sub> H, 24 h, −5°                                                                                                                                                                                                               | OH<br>OCH3                                                                                                    | (63)         | 604             |
|                 | 2,4,6-(CH <sub>3</sub> ) <sub>3</sub> C <sub>6</sub> H <sub>2</sub> CHO<br>2-( <i>n</i> -C <sub>3</sub> H <sub>7</sub> O)C <sub>6</sub> H <sub>4</sub> CHO | 30% H <sub>2</sub> O <sub>2</sub> , [2,4-(NO <sub>2</sub> ) <sub>2</sub> C <sub>6</sub> H <sub>3</sub> Se] <sub>2</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 28 h, 25°<br>30% H <sub>2</sub> O <sub>2</sub> , (o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> , | 2,4,6-(CH <sub>3</sub> )₃C <sub>6</sub> H₂OH<br>2-( <i>n</i> -C₃H7O)C <sub>6</sub> H₄OH                       | (91)<br>(96) | 578<br>578      |
|                 | CHO<br>OH<br>C <sub>3</sub> H <sub>7</sub> -i                                                                                                              | 6% H <sub>2</sub> O <sub>2</sub> , NaOH, 12 h, 40–60°                                                                                                                                                                                                                               | $\bigcup_{C_3H_{7}i}^{OH}$                                                                                    | (68)         | 545             |
|                 | CHO                                                                                                                                                        | MCPBA, CH2Cl2, 21 h, reflux                                                                                                                                                                                                                                                         | O <sub>2</sub> CH                                                                                             | (92)         | 584             |
|                 | OCH <sub>3</sub><br>CHO<br>CHO<br>CH <sub>3</sub>                                                                                                          | 30% H2O2, &O2NC6H4SeO2H,<br>CH2Cl2, 33 h, 25°                                                                                                                                                                                                                                       | OCH3<br>OH<br>UCH3                                                                                            | (89)         | 578             |
|                 | CHO<br>OCH <sub>3</sub>                                                                                                                                    | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 24 h, reflux                                                                                                                                                                                                                               | O <sub>2</sub> CH<br>OCH <sub>3</sub><br>OCH <sub>3</sub>                                                     | (96)         | 584, 590<br>591 |
|                 | CHO<br>CH <sub>3</sub> O                                                                                                                                   | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 24 h, reflux                                                                                                                                                                                                                               | CH <sub>3</sub> O <sub>2</sub> CH                                                                             | (65)         | 584, 59         |

| Reactant                                                                 | Conditions                                                                                                                                                                                               | Product(s) and Yield(s) (%)                                                            |      | Refs.    |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------|----------|
| CHO<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CHO<br>OCH <sub>3</sub> | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 50 h, reflux                                                                                                                                                    | CH <sub>3</sub> O<br>O <sub>2</sub> CH<br>OCH <sub>3</sub> O                           | (89) | 584      |
| CHO<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O                            | 30% H <sub>2</sub> O <sub>2</sub> , (o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 16 h, 25°                                                   | CH <sub>3</sub> O                                                                      | (93) | 578      |
| CHO<br>OCH3<br>OCH2OCH3                                                  | 1. 30% H <sub>2</sub> O <sub>2</sub> , [2,4-(O <sub>2</sub> N) <sub>2</sub> C <sub>6</sub> H <sub>3</sub> Se] <sub>2</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 25°<br>2. KOH, CH <sub>3</sub> OH, 1 h | OH<br>OCH <sub>3</sub><br>OCH <sub>2</sub> OCH <sub>3</sub>                            | (74) | 578, 596 |
| CHO<br>OCH <sub>2</sub> OCH <sub>3</sub>                                 | 30% H <sub>2</sub> O <sub>2</sub> , [2,4-(O <sub>2</sub> N) <sub>2</sub> C <sub>6</sub> H <sub>3</sub> Se] <sub>2</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 16 h, 25°                                 | OH<br>OCH <sub>2</sub> OCH <sub>3</sub><br>OCH <sub>3</sub>                            | (73) | 578      |
| CHO<br>CH <sub>3</sub> O<br>OCH <sub>3</sub>                             | PAA, HClO4, AcOH, 25°                                                                                                                                                                                    | CH <sub>3</sub> O<br>OCH <sub>3</sub> O                                                | (50) | 573      |
|                                                                          | 35% PAA, HClO4, Ac2O, 1 h, 0-5°                                                                                                                                                                          | CH <sub>3</sub> O <sup>2</sup> CH<br>CH <sub>3</sub> O<br>OCH <sub>3</sub>             | (59) | 607      |
| CHO<br>OCH3<br>OCH3                                                      | 31% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , CH <sub>3</sub> OH, 1 h, 25°                                                                                                        | OH<br>OCH3<br>OCH3                                                                     | (97) | 579, 591 |
| UCH3                                                                     | 40% PAA, H <sub>2</sub> SO <sub>4</sub> , CH <sub>3</sub> OH-H <sub>2</sub> O,<br>2 h, 20°                                                                                                               | о-сн                                                                                   | (95) | 608      |
|                                                                          | 35% PAA, HClO <sub>4</sub> , Ac <sub>2</sub> O, 2 h, 13°                                                                                                                                                 | OCH <sub>3</sub>                                                                       | (67) | 607      |
| <b>сно</b>                                                               | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 24 h, reflux                                                                                                                                                    | осн <sub>3</sub><br>"<br>о <sub>2</sub> сн о                                           | (83) | 584      |
| CH <sub>3</sub> O OCH <sub>3</sub>                                       | 35% PAA, HClO4, Ac2O                                                                                                                                                                                     | $CH_{3O} \xrightarrow{OCH_{3}}_{OCH_{3}} + CH_{3O} \xrightarrow{OCH_{3}}_{O}$ (74) (9) |      | 607      |
|                                                                          | 1. MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 48 h, heat<br>2. KOH, CH <sub>3</sub> OH, 25°                                                                                                                | CH <sub>3</sub> O<br>OCH <sub>3</sub>                                                  | (79) | 584      |
|                                                                          |                                                                                                                                                                                                          |                                                                                        |      |          |

| TABLE VII. | REACTIONS OF ALDEHYDES (Continued) |  |
|------------|------------------------------------|--|

| -  | Reactant                                                                                                                                                            | Conditions                                                                                                                                                                                                                                                  | Product(s) and Yield(s) (%)                                                     |              | Refs.      |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------|------------|
|    |                                                                                                                                                                     | 31% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , CH <sub>3</sub> OH, 4 h, 25°<br>30% H <sub>2</sub> O <sub>2</sub> , (o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 24 h, 25° |                                                                                 | (89)<br>(88) | 579<br>578 |
|    | CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>OCH <sub>3</sub>                                                                                                          | 35% PAA, HClO <sub>4</sub> , Ac <sub>2</sub> O, 1 h                                                                                                                                                                                                         | CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>OCH <sub>3</sub>                      | (70)         | 607        |
|    |                                                                                                                                                                     | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 2 h, 0–25°                                                                                                                                                                                                         | CH <sub>3</sub> O<br>OCH <sub>3</sub> O<br>OCH <sub>3</sub>                     | (64)         | 583        |
|    | CHO                                                                                                                                                                 | 31% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , CH <sub>3</sub> OH, 2 h, 25°                                                                                                                                                           |                                                                                 | (89)         | 579        |
|    | CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O                                                                                                         | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 48 h, reflux                                                                                                                                                                                                       | CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>OCH <sub>3</sub> | (79)         | 584        |
|    | CHO<br>OH<br>OCH <sub>3</sub>                                                                                                                                       | 6% H2O2, NaOH, 1 h, 10°                                                                                                                                                                                                                                     | OH<br>OCH <sub>3</sub><br>OCH <sub>3</sub>                                      | (67)         | 553        |
|    | $\begin{array}{c} H \\ \hline 0 \\ CH0 \\ I \\ I \\ H = 50.50 \end{array} + \begin{array}{c} H \\ \hline 0 \\ CH0 \\ I \\ $ | MCPBA (85%), CH <sub>2</sub> Cl <sub>2</sub> , 24 h, 12°<br>O                                                                                                                                                                                               | H + H + H = 0                                                                   | (85)         | 298        |
| Cu | CHO<br>Br                                                                                                                                                           | 30% H <sub>2</sub> O <sub>2</sub> , (o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> , .<br>CH <sub>2</sub> Cl <sub>2</sub> , 58 h, 25°                                                                                                    | OH<br>Br                                                                        | (91)         | 578        |
|    | CHO                                                                                                                                                                 | 1. MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 4–48 h, 25°<br>2. KF (anh), 4–5 h                                                                                                                                                                               | O <sub>2</sub> CH                                                               | (92)         | 613, 614   |
|    |                                                                                                                                                                     | 30% H <sub>2</sub> O <sub>2</sub> , [2,4-(O <sub>2</sub> N) <sub>2</sub> C <sub>6</sub> H <sub>3</sub> Se] <sub>2</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 21 h, 25°                                                                                    | он                                                                              | (91)         | 578        |
|    | ССССНО                                                                                                                                                              | 1. MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 4–48 h, 25°<br>2. KF (anhydrous), 4–5 h                                                                                                                                                                         | O <sub>2</sub> CH                                                               | (80)         | 613, 614   |
|    |                                                                                                                                                                     | 30% H <sub>2</sub> O <sub>2</sub> , [2,4-(O <sub>2</sub> N) <sub>2</sub> C <sub>6</sub> H <sub>3</sub> Se] <sub>2</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 80 h, 25°                                                                                    | ОН                                                                              | (67)         | 578        |
|    | HOHO                                                                                                                                                                | 6% H <sub>2</sub> O <sub>2</sub> , NaOH, 1 h, 0°                                                                                                                                                                                                            | HOLOFO                                                                          | (—)          | 557        |

| TABLE VII. REACTIONS OF ALDEHYDES ( | Continued) |
|-------------------------------------|------------|
|-------------------------------------|------------|

| TABLE VII. | REACTIONS OF ALDEHYDES | (Continued) | ) |
|------------|------------------------|-------------|---|
|------------|------------------------|-------------|---|

| Reactant                       | Conditions                                                                                            | Product(s) and Yield(s) (%)                                            |       | Ref | s. |
|--------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------|-----|----|
| OHC OH                         | 6% H <sub>2</sub> O <sub>2</sub> , NaOH, 1 h, 0°                                                      | HO OH OH                                                               | ()    | 557 |    |
| HO HO OH<br>OHC HO O           | 6% H <sub>2</sub> O <sub>2</sub> , NaOH, 1 h, 0°                                                      | HO HO OH<br>HO HO HO                                                   | ()    | 557 |    |
| OHC<br>HO<br>OHC               | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, 12 h, 0°                                                    | HO HO OCH3                                                             | (63)  | 569 |    |
| HO CHO<br>OH                   | 6% H2O2, NaOH, 1 h, 0°                                                                                | HO HO OH                                                               | (63)  | 558 |    |
| CH <sub>3</sub> O<br>HO<br>CHO | 6% H2O2, NaOH, C3H3N, 1.25 h,<br>0−10°                                                                | CH <sub>3</sub> O<br>HO<br>HO<br>OH                                    | (53)  | 562 |    |
| СНО                            | 30% H <sub>2</sub> O <sub>2</sub> , Na <sub>2</sub> CO <sub>3</sub> -H <sub>2</sub> O,<br>1 h, 20–25° | CO <sub>2</sub> H<br>(CH <sub>2</sub> ) <sub>2</sub> CO <sub>2</sub> H | (80)  | 204 |    |
| OH<br>CH <sub>3</sub> O CHO    | 30% H <sub>2</sub> O <sub>2</sub> , KOH, H <sub>2</sub> O, 30 min, 25°                                | O<br>O<br>O<br>O<br>O<br>O<br>O<br>O                                   | (73)  | 571 |    |
| HOCHOCHO                       | 4.9% H <sub>2</sub> O <sub>2</sub> , NaOH, 1.5 h, 25°                                                 | но с                                                                   | (—)   | 566 |    |
| CHO                            | 85% MCPBA, CH2Cl2, 24 h, 25°                                                                          | OH<br>OH                                                               | (77)  | 610 |    |
| UCH3                           | 31% H <sub>2</sub> O <sub>2</sub> , KHSO <sub>4</sub> , CH <sub>3</sub> OH,<br>4 h, 25°               | OCH3<br>"                                                              | (83)  | 579 |    |
| CH <sub>3</sub> O              | 85% MCPBA, CH2Cl2, 24 h, 25°                                                                          | CH <sub>3</sub> O                                                      | (100) | 610 |    |
| CH30                           | 85% MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 20 h, 25°                                                | CH <sub>3</sub> O OH                                                   | (100) | 610 |    |
| CHO<br>OCH <sub>3</sub>        | 85% MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 20 h, 25°                                                | OH<br>OCH <sub>3</sub>                                                 | (69)  | 610 |    |

| Reactant                                                                                                                                                             | Conditions                                                                                                                                                                                                     | Product(s) and Yield(s) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %)                                   | Refs.    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------|
|                                                                                                                                                                      | 30% H <sub>2</sub> O <sub>2</sub> , 85% HCO <sub>2</sub> H, 24 h, -5°                                                                                                                                          | TTO<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (54)                                 | 604      |
| 2,3,5,6-(CH <sub>3</sub> ),C <sub>6</sub> HCHO                                                                                                                       | 30% H <sub>2</sub> O <sub>2</sub> , ( <i>o</i> -O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> 16 b 25°                                                   | ОН<br>2,3,5,6-(CH <sub>3</sub> ) <sub>4</sub> C <sub>6</sub> HOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (88)                                 | 578      |
| 2,3,4,6-(CH <sub>3</sub> ) <sub>4</sub> C <sub>6</sub> HCHO                                                                                                          | 30% H <sub>2</sub> O <sub>2</sub> , ( <i>o</i> -O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 18 h, 25°                                                | 2,3,4,6-(CH <sub>3</sub> ) <sub>4</sub> C <sub>6</sub> HOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (98)                                 | 578      |
| o-(i-C₄H₃O)C <sub>6</sub> H₄CHO                                                                                                                                      | 30% H <sub>2</sub> O <sub>2</sub> , (o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 31 h, 25°                                                         | <i>ѻ</i> -(і-С₄НҙО)С <sub>6</sub> Н₄ОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (81)                                 | 578      |
| i-C <sub>3</sub> H <sub>7</sub> OH                                                                                                                                   | 3% $H_2O_2$ , NaOH, immediate, 25°                                                                                                                                                                             | i-C <sub>3</sub> H <sub>7</sub> OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (64)                                 | 555      |
| CHO<br>OH<br>C <sub>4</sub> H <sub>9</sub> -t                                                                                                                        | 6% H <sub>2</sub> O <sub>2</sub> , NaOH, 12 h, 40–60°                                                                                                                                                          | OH<br>OH<br>C4Hg-t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (57)                                 | 545      |
|                                                                                                                                                                      | 6% H <sub>2</sub> O <sub>2</sub> , NaOH, 12 h, 40-60°                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (82)                                 | 545      |
| CHO<br>OCH3<br>C <sub>2</sub> H <sub>5</sub><br>OCH3                                                                                                                 | 30% H <sub>2</sub> O <sub>2</sub> , 85% HCO <sub>2</sub> H, 38 h, 25°                                                                                                                                          | C <sub>2</sub> H <sub>5</sub><br>OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (19)                                 | 591      |
| CHO<br>OCH <sub>3</sub>                                                                                                                                              | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 12 h, reflux                                                                                                                                                          | O <sub>2</sub> CH<br>OCH <sub>3</sub><br>OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (88)                                 | 584      |
| CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub>                                                                  | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 2 h, 0–25°                                                                                                                                                            | CH <sub>3</sub> O <sub>2</sub> CH<br>CH <sub>3</sub> O <sub>4</sub> OCH <sub>3</sub><br>OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (64)                                 | 583      |
| CHO<br>OCH <sub>3</sub><br>CH <sub>3</sub> O<br>OCH <sub>3</sub>                                                                                                     | 35% PAA, HClO₄, Ac₂O, 3 h, −15<br>to 5°                                                                                                                                                                        | $CH_{3}O \xrightarrow{OH} OCH_{3} + CH_{3}O \xrightarrow{O} OCH_{3$ | OCH <sub>3</sub><br>OCH <sub>3</sub> | 607      |
|                                                                                                                                                                      | 1. 80% H <sub>2</sub> O <sub>2</sub> , [2,4-(O <sub>2</sub> N) <sub>2</sub> C <sub>6</sub> H <sub>3</sub> Se] <sub>2</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 45 h, 25°<br>2. KOH, CH <sub>3</sub> OH, 1 h | I II<br>(62) (6)<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (94)                                 | 578, 596 |
| CH <sub>3</sub> O<br>CH <sub>3</sub> O | DNPBA, CH <sub>2</sub> Cl <sub>2</sub> , 1.5 h, 20°                                                                                                                                                            | CH <sub>3</sub> O <sub>2</sub> CH<br>CH <sub>3</sub> O<br>OCH <sub>3</sub><br>OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (94)                                 | 600      |
|                                                                                                                                                                      | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 96 h, reflux                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (82)                                 | 584      |

TABLE VII. REACTIONS OF ALDEHYDES (Continued)

735

-

| Reactant                  | Conditions                                                                                                                                             | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Refs.                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | 30% H2O2, (0-O2NC6H4Se)2,<br>CH2Cl2, 9 h, 25°                                                                                                          | CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>OCH <sub>3</sub><br>OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (93)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 578, 596                                                                                                                                                                                                                                                                                                                                                                        |
| ,сно                      | 30% H <sub>2</sub> O <sub>2</sub> , 3 h, 25°                                                                                                           | $(16) \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 82                                                                                                                                                                                                                                                                                                                                                                              |
| Сно                       | 6% H <sub>2</sub> O <sub>2</sub> , NaOH, 1 h, 0°                                                                                                       | $ \begin{array}{c} H \\ H \\ H \end{array} + \begin{array}{c} CH_2CO_2H \\ CH_2)_2CO_2H \end{array} + \begin{array}{c} CH_2CO_2H \\ CH_2)_2CO_2H \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 81                                                                                                                                                                                                                                                                                                                                                                              |
| O<br>THO                  | 1. 28% H <sub>2</sub> O <sub>2</sub> , KOH-H <sub>2</sub> O,<br>40 min, 29°<br>2. 12 h, 20°                                                            | (36) (24)<br>HO <sub>2</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (62)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 202                                                                                                                                                                                                                                                                                                                                                                             |
|                           | 28% H <sub>2</sub> O <sub>2</sub> , AcOH, 12 h, 20°                                                                                                    | HO <sub>2</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 202                                                                                                                                                                                                                                                                                                                                                                             |
| ю                         |                                                                                                                                                        | СНО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                 |
|                           | 6% H2O2, NaOH, 1 h, 0°                                                                                                                                 | HO OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 557                                                                                                                                                                                                                                                                                                                                                                             |
| IO<br>OCH <sub>3</sub>    | 30% H <sub>2</sub> O <sub>2</sub> , (o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 25 h, 25° | OH<br>OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (98)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 578                                                                                                                                                                                                                                                                                                                                                                             |
| ю<br>]<br>:н <sub>3</sub> | 30% H <sub>2</sub> O <sub>2</sub> , o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> SeO <sub>2</sub> H,<br>CH <sub>2</sub> Cl <sub>2</sub> , 27 h, 25° | CHO<br>CHO<br>OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 578                                                                                                                                                                                                                                                                                                                                                                             |
|                           | 6% H <sub>2</sub> O <sub>2</sub> , NaOH, 2 h, 0°                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 558                                                                                                                                                                                                                                                                                                                                                                             |
|                           | 6% H <sub>2</sub> O <sub>2</sub> , NaOH, 1 h, 0°                                                                                                       | HOTOTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (—)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 558                                                                                                                                                                                                                                                                                                                                                                             |
| CH <sub>3</sub>           | 30% H <sub>2</sub> O <sub>2</sub> , 50% H <sub>2</sub> SO <sub>4</sub> , AcOH,<br>16 h, 0°                                                             | CH <sub>3</sub> O<br>HO<br>HO<br>OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (74)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 569                                                                                                                                                                                                                                                                                                                                                                             |
|                           | Reactant<br>CHO<br>CHO<br>CHO<br>O<br>O<br>O<br>O<br>O<br>O<br>O                                                                                       | Reactant         Conditions           30% H <sub>2</sub> O <sub>2</sub> , ( $\phi$ -O <sub>2</sub> NC <sub>4</sub> H <sub>4</sub> Se) <sub>2</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 9 h, 25° $f$ CHO         30% H <sub>2</sub> O <sub>2</sub> , 3 h, 25° $f_{O}$ 6% H <sub>2</sub> O <sub>2</sub> , NaOH, 1 h, 0° $f_{O}$ 6% H <sub>2</sub> O <sub>2</sub> , NaOH, 1 h, 0° $f_{O}$ 1. 28% H <sub>2</sub> O <sub>2</sub> , KOH-H <sub>2</sub> O,<br>40 min, 29° $f_{O}$ 2. 12 h, 20° $28\%$ H <sub>2</sub> O <sub>2</sub> , AcOH, 12 h, 20° $f_{O}$ 6% H <sub>2</sub> O <sub>2</sub> , O-O <sub>2</sub> NC <sub>4</sub> H <sub>4</sub> Se) <sub>2</sub> ,<br>CH <sub>1</sub> Cl <sub>2</sub> , 25 h, 25° $f_{O}$ 30% H <sub>2</sub> O <sub>2</sub> , $(\phi$ -O <sub>2</sub> NC <sub>4</sub> H <sub>4</sub> Se) <sub>2</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 25 h, 25° $f_{O}$ $f_{$ | ReactantConditionsProduct(s) and Yield(s) (%)30% H_2O_2, (o-O_2NC_1H_SO)2,<br>CH_2O_1, 9 h, 25° $CH_2O_1H_1 \rightarrow 0CH_2 \rightarrow 0CH_3$<br>$OCH_3 \rightarrow 0CH_3 \rightarrow 0CH_3$ $f^{CHO}$ 30% H_2O_2, 3 h, 25° $CH_2O_1H_1 \rightarrow (f_1) \rightarrow (f_2) \rightarrow ($ | Reactant         Condition         Product(s) and Yield(s) (%)           30% H_O <sub>2</sub> , 6-O <sub>1</sub> NC <sub>4</sub> H <sub>1</sub> Sc),<br>CH <sub>2</sub> O <sub>2</sub> , 5 h, 25°         CH <sub>2</sub> O <sub>1</sub> |

TABLE VII. REACTIONS OF ALDEHYDES (Continued)

|                 | Reactant                                                                                                     | Conditions                                                                                                                                                               | Product(s) and Yield(s) (%)                                               |      | Refs | 5. |
|-----------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------|------|----|
|                 | OCHO<br>OCH1                                                                                                 | HCO <sub>3</sub> H, 16 h, -5°                                                                                                                                            | O <sub>2</sub> CH<br>O<br>U<br>O<br>O<br>O<br>CH                          | (50) | 601  |    |
|                 | CHO<br>CH <sub>3</sub> O <sub>2</sub> C<br>CO <sub>2</sub> CH <sub>3</sub>                                   | 28% H <sub>2</sub> O <sub>2</sub> , KOH, 3 h, 40°                                                                                                                        | CH <sub>3</sub> O <sub>2</sub> C CO <sub>2</sub> CH <sub>3</sub>          | (75) | 570  |    |
|                 | CHO<br>CHO<br>O                                                                                              | 50% H₂O₂, 85% HCO₂H, 24 h, −5°                                                                                                                                           | J J OH<br>OH<br>OH                                                        | (62) | 604  |    |
|                 | CHO<br>CHO<br>OCH <sub>3</sub>                                                                               | 31% H <sub>2</sub> O <sub>2</sub> , KHSO <sub>4</sub> , CH <sub>3</sub> OH, 4 h, 25°                                                                                     | OH<br>OCH <sub>3</sub>                                                    | (97) | 579  |    |
|                 | CH0<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , reflux                                                                                                                          | CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CO <sub>2</sub> CH <sub>3</sub> | (—)  | 592  |    |
|                 | i-C <sub>3</sub> H <sub>7</sub>                                                                              | 30% H <sub>2</sub> O <sub>2</sub> , K <sub>2</sub> CO <sub>3</sub> , 15 h, 25°                                                                                           |                                                                           | (—)  | 555  |    |
|                 | (CH <sub>3</sub> ) <sub>5</sub> C <sub>6</sub> CHO                                                           | 30% H <sub>2</sub> O <sub>2</sub> , ( $o$ -O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> 60 b 25°                  | (CH <sub>3</sub> ) <sub>5</sub> C <sub>6</sub> OH                         | (77) | 578  |    |
|                 | СНО                                                                                                          | 28% H <sub>2</sub> O <sub>2</sub> , AcOH                                                                                                                                 | $HO_2C(CH_2)_{11}CO_2H + HO_2C(CH_2)_{10}CO_2H$<br>I II<br>(56) (4)       |      | 202  |    |
|                 | $\sim$                                                                                                       | 28% H <sub>2</sub> O <sub>2</sub> , KOH, 12 h, 20°                                                                                                                       | 1 + 11<br>(25) (27)                                                       |      | 202  |    |
| C <sub>13</sub> | Стрено                                                                                                       | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , argon, 20 h, 25°                                                                                                                | $O_{O} O^{OH} + O_{O} O^{CO_2}$                                           | н    | 614  |    |
|                 |                                                                                                              | 30% H <sub>2</sub> O <sub>2</sub> , HCO <sub>2</sub> H, 20 h, 25°                                                                                                        | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                     |      | 614  |    |
|                 | <i>p</i> -C <sub>6</sub> H <sub>5</sub> C <sub>6</sub> H₄CHO                                                 | 30% H <sub>2</sub> O <sub>2</sub> , [2,4-(O <sub>2</sub> N) <sub>2</sub> C <sub>6</sub> H <sub>3</sub> Se] <sub>2</sub> ,                                                | (81) (1)<br>$p-C_{b}H_{5}C_{6}H_{4}OH$                                    | (77) | 578  |    |
|                 | ĊHO                                                                                                          | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 25°                                                                                                                             | "<br>OH                                                                   | (80) | 614  |    |
|                 |                                                                                                              | 30% H <sub>2</sub> O <sub>2</sub> , [2,4-(O <sub>2</sub> N) <sub>2</sub> C <sub>6</sub> H <sub>3</sub> Se] <sub>2</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , 25 h, 25° |                                                                           | (92) | 578  |    |

## TABLE VII. REACTIONS OF ALDEHYDES (Continued)



TABLE VII. REACTIONS OF ALDEHYDES (Continued)


## TABLE VII. REACTIONS OF ALDEHYDES (Continued)

| -               | Reactant                                                                                | Conditions                                                                              | Product(e) and Vield(e) (%)                                                                                       |      | Defe  |
|-----------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------|-------|
| -               | CUO                                                                                     | Conditions                                                                              |                                                                                                                   |      | Reis. |
|                 | CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 90 h, reflux                                   | CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CCO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>                          | (80) | 584   |
|                 | cho<br>i-C <sub>3</sub> H <sub>7</sub> C <sub>3</sub> H <sub>7</sub> -i                 | 3% H <sub>2</sub> O <sub>2</sub> , KOH, 15–40 min, 25°                                  | OH<br>i-C <sub>3</sub> H <sub>7</sub> C <sub>3</sub> H <sub>7</sub> -i                                            | (94) | 548   |
|                 | он                                                                                      | 28% $H_2O_2$ , AcOH, 12 h, 20°                                                          | $\begin{array}{c} \dot{OH} \\ HO_2C(CH_2)_{12}CO_2H + HO_2C(CH_2)_{11}CO_2H \\ I \\ I \\ (67) \\ (4) \end{array}$ |      | 202   |
| C <sub>14</sub> | $\tilde{\Box}$                                                                          | 28% H <sub>2</sub> O <sub>2</sub> , KOH, 12 h, 20°                                      | + $HO_2C(CH_2)_9CO_2H$<br>III<br>(4)<br>I + II + III<br>(21) (16) (26)                                            |      | 202   |
|                 | CHC CHO                                                                                 | 35% H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> SO <sub>4</sub> , CH <sub>3</sub> OH | C C C C C C C C C C C C C C C C C C C                                                                             | (90) | 611   |
|                 | CHO                                                                                     | 1. MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 4–48 h, 25°<br>2. KF, 4–5 h                 | O <sub>2</sub> CH                                                                                                 | (88) | 613   |
|                 | <i>ѵ</i> -(C₀H₃CH₂O)C₀H₄CHO                                                             | 30% H2O2, (0-O2NC6H4Se)2,<br>CH2Cl2, 15 h, 25°                                          | <i>⊳</i> -(C <sub>6</sub> H <sub>3</sub> CH <sub>2</sub> O)C <sub>6</sub> H <sub>4</sub> OH                       | (91) | 578   |
|                 | CHO                                                                                     | 1. MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 4–48 h, 25°<br>2. KF, 4–5 h                 | O <sub>2</sub> CH                                                                                                 | (90) | 613   |
|                 | CHO<br>(CH <sub>2</sub> ) <sub>3</sub> OH                                               | 1. MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 4–48 h, 25°<br>2. KF, 4–5 h                 | O <sub>2</sub> CH<br>(CH <sub>2</sub> ) <sub>3</sub> OH                                                           | (80) | 613   |
|                 | CHO<br>CHO                                                                              | 50% H₂O₂, 85% HCO₂H, 24 h, −5°                                                          | OH<br>V<br>OH<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O                                    | (56) | 604   |
| Cıs             | CHO                                                                                     | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 25°                                            | OH                                                                                                                | (81) | 614   |
|                 | CHO                                                                                     | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 25°                                            | OH<br>C                                                                                                           | (92) | 614   |
|                 | СНО                                                                                     | 15% H <sub>2</sub> O <sub>2</sub> , NaOH, C <sub>3</sub> H <sub>5</sub> N, 1.5 h, 25°   | ОН                                                                                                                | (79) | 568   |



TABLE VII. REACTIONS OF ALDEHYDES (Continued)

.



| TABLE VII. REACTIONS OF ALDEHYDES (Continue |
|---------------------------------------------|
|---------------------------------------------|

|                                                           | Reactant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Conditions                                                                                                 | Product(s) and Yield(s) (%)                                                                                                                                                                                                      |        | Refs |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| CH3O<br>HC                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. 6% H <sub>2</sub> O <sub>2</sub> , NaOH, C <sub>5</sub> H <sub>5</sub> N,<br>15 min, 10°<br>2. 2 h, 25° |                                                                                                                                                                                                                                  | (—)    | 560  |
| С <sub>19</sub><br>Сн <sub>3</sub> 0<br>Сн <sub>3</sub> 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 6.5 h, 25°                                                        | CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O                                                                                                                                                                      | (60)   | 597  |
| HO                                                        | CHO<br>OH<br>CO <sub>2</sub><br>CO <sub>2</sub><br>CO <sub>2</sub><br>CO <sub>2</sub><br>CO <sub>2</sub><br>CO <sub>2</sub><br>CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6% H <sub>2</sub> O <sub>2</sub> , NaOH, >1 h, 10°                                                         |                                                                                                                                                                                                                                  | (—)    | 554  |
| но                                                        | CHO<br>OH<br>CO <sub>2</sub><br>OH<br>OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6% H <sub>2</sub> O <sub>2</sub> , NaOH, >1 h, 10°                                                         |                                                                                                                                                                                                                                  | (—)    | 554  |
| онс,<br>но                                                | H<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H <sub>2</sub> O <sub>2</sub> , diglyme, 6 h, 50°                                                          | HO<br>HO<br>HO                                                                                                                                                                                                                   | (73)   | 96   |
| +                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            | +<br>HO<br>OH                                                                                                                                                                                                                    | (23)   |      |
| C6H11                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3% H <sub>2</sub> O <sub>2</sub> , KOH, 15–40 min, 25°                                                     | C <sub>6</sub> H <sub>11</sub><br>OH<br>OH                                                                                                                                                                                       | (42)   | 548  |
| С₂о<br>СН₃О<br>НО                                         | $\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ | ,4<br>1. 6% H₂O₂, NaOH, C₅H₅N,<br>15 min, 10°<br>2. 2 h, 25°                                               | $\begin{array}{c} CH_{3}O \\ HO \\ HO \\ OH \\ O\end{array} \begin{array}{c} O \\ C_{6}H_{3}(OCH_{3})_{2}-3,4 \\ OCH_{3} \\ OCH_{3} \end{array}$                                                                                 | (45)   | 559  |
| CH <sub>3</sub> O                                         | о осн <sub>3</sub><br>Сно                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 3 h, 20°                                                          | $\begin{cases} \downarrow \downarrow$ | СН₃    | 876  |
| C                                                         | O OCH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                            | $+\left\{ \underbrace{)}_{CO_2H} + \left\{ \underbrace{)}_{CO_2H} \right\} + \left\{ \underbrace{)}_{CO_2H} \right\}$                                                                                                            | 2COCH3 |      |

|                 | Reactant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Conditions                                                                                                                           | Product(s) and Yield(s) (%)                                                                                    |       | Refs |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------|------|
| C <sub>21</sub> | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                      |                                                                                                                |       |      |
| c               | $OHC \longrightarrow OHC OCH_3 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4,5<br>6% H <sub>2</sub> O <sub>2</sub> , NaOH, C <sub>5</sub> H <sub>5</sub> N, CHCl <sub>3</sub> ,<br>CH <sub>3</sub> OH, 2.25 h   | HO OCH3<br>HO OCH3<br>OH O OCH3                                                                                | (60)  | 561  |
| c               | (CH <sub>2</sub> ) <sub>2</sub> CO <sub>2</sub> C <sub>3</sub> H <sub>7</sub> - <i>i</i><br>.CHO<br>.H <sub>3</sub> O <sub>2</sub> C <sup>-</sup> H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MCPBA, KHCO <sub>3</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 24 h, reflux                                                            | (CH <sub>2</sub> ) <sub>2</sub> CO <sub>2</sub> C <sub>3</sub> H <sub>7</sub> - <i>i</i><br>.O <sub>2</sub> CH | (30)  | 621  |
|                 | $CH_{3}O$<br>$CH_{3}O$<br>$H_{3}O$<br>$H_{3}O$<br>$H_{3}O$<br>$CH_{3}$<br>$H_{3}O$<br>$CH_{3}$<br>$H_{3}O$<br>$CH_{3}$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}O$<br>$CH_{3}$                                                                                                           | 30% H <sub>2</sub> O <sub>2</sub> , AcOH, 1.5 h, 45°                                                                                 | CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>OCH <sub>3</sub>           | (47)  | 609  |
| 22<br>C         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DH<br>C <sub>2</sub> H <sub>5</sub> TFPAA (90%), Na <sub>2</sub> HPO <sub>4</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>several min | HO <sub>2</sub> C H                                                                                            | (79)  | 80   |
| н               | CHO<br>C <sub>15</sub> H <sub>31</sub> - <i>n</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6% H <sub>2</sub> O <sub>2</sub> , NaOH, 40-50°                                                                                      | HO $C_{15}H_{31}-n$                                                                                            | (20)  | 556  |
| 23<br>B         | HO CHO O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1. 6% H₂O₂, NaOH, C₃H₅N,<br>15 min, 10°<br>2. 2 h, 25°                                                                               | BnO<br>HO<br>HO<br>OH O                                                                                        | (52)  | 564  |
| E               | $\begin{array}{c} CD_3, D\\ CD_3, -CD0\\ CD_3, -H\\ H\\ D\\ D\\ CD_3 \\ H\\ H\\ D\\ D\\ CD_4 \\ H\\ D\\ D\\ CD_4 \\ H\\ D\\ D\\ CD_4 \\ H\\ D\\ D\\ CD_5 \\ H\\ H\\ D\\ D\\ CD0 \\ H\\ CD0 \\$ | МСРВА                                                                                                                                | $\begin{array}{c} CD_{3.} & D \\ CD_{3.} & O_{2}CD \\ \hline \\ H \\ H \\ H \\ D \\ D \end{array}$             | (—)   | 620  |
| (               | CHO<br>OAc OAc<br>OAc OAc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1. MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 4–48 h, 25°<br>2. KF, 4–5 h                                                              | OH<br>OAc OAc<br>OAc OAc                                                                                       | (59)  | 613  |
| с               | OHC<br>H3O2CCH2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MCPBA, CH <sub>2</sub> Cl <sub>2</sub>                                                                                               | HCO <sub>2</sub><br>CH <sub>3</sub> O <sub>2</sub> CCH <sub>2</sub> O                                          | (100) | 599  |

|                 | Reactant                                                      | Conditions                                                         | Product(s) and Yield(s) (%)                                                  |         | Refs.    |
|-----------------|---------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|---------|----------|
|                 | CH <sub>3</sub> CO <sub>2</sub> CHC                           | 30% H2O2, HCO2H, CHCl3, 5 h, 25°                                   | CO <sub>2</sub> CH<br>H                                                      | (60–65) | 906      |
| C <sub>24</sub> | BnO<br>HO<br>CHO O                                            | 6% H₂O₂, NaOH, C₅H₅N, 15–20°                                       | BnO<br>HO<br>OH<br>OH                                                        | (61)    | 564, 565 |
|                 | BnO<br>Cr7H15-77<br>CO2CH3<br>OCH3                            | 85% MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 1 h, 25°              | $\begin{array}{c} O_2CH\\ BnO \\ C_7H_{15}-n\\ CO_2CH_3\\ OCH_3 \end{array}$ | (81)    | 594      |
| C 28            | C6H5CO2                                                       | 0<br>1. MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 4 h<br>2. alumina | OH<br>H<br>H                                                                 | (29)    | 906      |
| C 30            | $CHO \\ BnO \\ C_7H_{15}-n \\ CO_2CH_3 \\ OBn$                | 85% MCPBA, CH2Cl2, 1 h, 25°                                        | $BnO \xrightarrow{O_2CH} C_7H_{15} - n$ $CO_2CH_3$ $OBn$                     | (70)    | 593, 594 |
| 031             | NC<br>H<br>H<br>CHO                                           | мСРВА, CH₂Cl₂, 21 h, 25°                                           | NC H H H                                                                     | (48)    | 622      |
|                 | NC<br>H<br>H<br>OHC<br>H                                      | <sup>в</sup> МСРВА, СН <sub>2</sub> Сl <sub>2</sub> , 21 h, 25°    | NC<br>H<br>HO<br>H                                                           | (43)    | 622      |
| C33             | CHO<br>BnO<br>C <sub>5</sub> H <sub>11</sub> -n<br>OBn<br>OBn | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 4.3 h, 25°                | $\begin{array}{c} O_2CH\\ BnO \\ C_5H_{11}-n\\ OBn\\ OBn \end{array}$        | (84)    | 595      |

TABLE VII. REACTIONS OF ALDEHYDES (Continued)

TABLE VII. REACTIONS OF ALDEHYDES (Continued)

|                 | Reactant                                                                    | Conditions                                                                                                                     | Product(s) and Yield(s) (%)        |       | Refs. |
|-----------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|-------|
| C <sub>37</sub> | BnO<br>HO<br>CHO O<br>C <sub>6</sub> H <sub>3</sub> (OBn) <sub>2</sub> -3,4 | <ol> <li>6% H<sub>2</sub>O<sub>2</sub>, NaOH, C<sub>3</sub>H<sub>3</sub>N,</li> <li>0.5 h, 15–25°</li> <li>2 h, 25°</li> </ol> | BnO<br>HO<br>OH<br>OH              | (—)   | 563   |
| C41             | CHO<br>OBn<br>OTBDPS                                                        | MCPBA, Na <sub>2</sub> HPO <sub>4</sub> , CHCl <sub>3</sub> , 3 h, 20°                                                         | O <sub>2</sub> CH<br>OBn<br>OTEDPS | (>88) | 598   |

TABLE VIII. REACTIONS OF  $\alpha$ ,  $\beta$ -UNSATURATED ALDEHYDES

| _              | Reactant                                                                           | Conditions                                                                                                                                                                                                                                                                                                                          | Product(s) and Yield(s) (%)                                                                                              |                                                    | Refs.      |
|----------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------|
| C7             | СНО                                                                                | 30% H <sub>2</sub> O <sub>2</sub> , (o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>27 h, 25°                                                                                                                                                                              | ⟨O₂CH                                                                                                                    | (53)                                               | 628        |
| C <sub>8</sub> | СНО                                                                                | 30% H <sub>2</sub> O <sub>2</sub> , (o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>23 h, 25°                                                                                                                                                                              | + CO2CH                                                                                                                  | (8)*                                               | 628        |
|                | ( <i>E</i> )- <i>n</i> -C <sub>3</sub> H <sub>7</sub> CH(CH <sub>3</sub> )CH=CHCHO | 30% H <sub>2</sub> O <sub>2</sub> , ( <i>o</i> -O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>174 h, 25°<br>90% H <sub>2</sub> O <sub>2</sub> , ( <i>o</i> -O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>19 h, 25° | (61) (6)<br>( <i>E</i> )- <i>n</i> -C <sub>3</sub> H <sub>7</sub> CH(CH <sub>3</sub> )CH = CHO <sub>2</sub> CH<br>I<br>I | (45)<br>+(12)*<br>(20)                             | 628<br>628 |
|                |                                                                                    |                                                                                                                                                                                                                                                                                                                                     | + n-C <sub>3</sub> H <sub>7</sub> CH(CH <sub>3</sub> )                                                                   | (20)                                               |            |
|                | $n-C_3H_7CH = C(C_2H_5)CHO$                                                        | PAA, AcOH, 9 h, 20-25°                                                                                                                                                                                                                                                                                                              | $n-C_3H_7CH = C(C_2H_5)O_2CH + \frac{n-C_3H_7}{\sqrt{2}}$                                                                | C <sub>2</sub> H <sub>5</sub><br>O <sub>2</sub> CH | 623        |
| с.             |                                                                                    |                                                                                                                                                                                                                                                                                                                                     | (50) (30)                                                                                                                |                                                    |            |
| ~ 4            | (E)-C <sub>6</sub> H <sub>5</sub> CH=CHCHO                                         | 30% $H_2O_2$ , (C <sub>6</sub> $H_5Se$ ) <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> , 54 h, 25°                                                                                                                                                                                                                                 | (E)-C <sub>6</sub> H <sub>5</sub> CH=CHO <sub>2</sub> CH                                                                 | (68)                                               | 628        |

| Reactant                                                         | Conditions                                                                                                                                              | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | Refs. |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------|
| СНО                                                              | 30% H2O2, (0-O2NC6H4Se)2, CH2Cl2,<br>32 h, 25°                                                                                                          | $\int_{-\infty}^{0_2 \text{CH}} + \int_{-\infty}^{0_2 \text{CH}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 628   |
| Сно                                                              | 30% H2O2, (0-O2NC6H4Se)2, CH2Cl2,<br>23 h, 25°                                                                                                          | $O_2 O_2 CH + O_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 628   |
| ( <i>n</i> -C <sub>3</sub> H <sub>7</sub> ) <sub>2</sub> C=CHCHO | 30% H <sub>2</sub> O <sub>2</sub> , (o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Sc) <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>33 h, 25°  | $(n-C_3H_7)_2C = CHO_2CH + \frac{n-C_3H_7}{n-C_3H_7} O O_2CH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 628   |
| C.                                                               | MCPBA (2 eq), CH <sub>2</sub> Cl <sub>2</sub> , 39 h, 25°                                                                                               | $\begin{array}{c} (64) & (17) \\ I + (n-C_3H_7)_2 \text{COHCHO} & + \\ (29) & (31) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -(7)*         | 628   |
| СПССНО                                                           | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 18 h, heat                                                                                                     | CT OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (85)          | 629   |
| O <sub>2</sub> N CHO                                             | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 24 h, heat                                                                                                     | O <sub>2</sub> N OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (80)          | 629   |
| СНО                                                              | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 16 h, heat                                                                                                     | OH (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90)           | 629   |
| СНО                                                              | 30% H <sub>2</sub> O <sub>2</sub> , (0-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>22 h, 25°  | O <sub>2</sub> CH (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70)           | 628   |
| СНО                                                              | 30% H <sub>2</sub> O <sub>2</sub> , (o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>24 h, 25°  | O <sub>2</sub> CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (59)          | 628   |
| C6H5 CHO                                                         | 30% H <sub>2</sub> O <sub>2</sub> , (o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>24 h, 25°  | $\overset{C_6H_5}{\longrightarrow} \overset{O_2CH}{\longrightarrow} + C_6H_5COCH_3 + C_6H_5COCH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •(5)*         | 628   |
| C6H5 CHO                                                         | 30% H <sub>2</sub> O <sub>2</sub> , (o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>15 h, 25°  | $C_6H_5 \xrightarrow{(60)} H + C_6H_5COCH_3 + C_6H_5C(CH_3)OH_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | сно           | 628   |
|                                                                  | 30% H <sub>2</sub> O <sub>2</sub> , (o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>128 h, 25° | $(73) \qquad (<1) \qquad (12) + (1) \qquad (12) \qquad ($ | -(7)*<br>(85) | 628   |
|                                                                  | MCPBA, (2 eq), CH <sub>2</sub> Cl <sub>2</sub> , 125 h, 25°                                                                                             | $\overset{H}{\underset{C_6H_5}{\longrightarrow}} \overset{O_2CH}{\longleftarrow} + C_6H_5CHO + ($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (21)*         | 628   |
| $(E)-n-C_7H_{15}CH = CHCHO$                                      | 30% H <sub>2</sub> O <sub>2</sub> , (o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>190 h, 25° | $(41) 	(24) (E)-n-C_7H_{15}CH = CHO_2CH 	($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (52)          | 628   |

TABLE VIII. REACTIONS OF  $\alpha$ ,  $\beta$ -UNSATURATED ALDEHYDES (Continued)

|                     | Reactant   | Conditions                                                                                                                                              | Product(s) and Yield(s) (%)                                                                                                                                                          |                | Refs. |
|---------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|
| n-C <sub>6</sub> H1 |            | 30% H <sub>2</sub> O <sub>2</sub> , (o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>22 h, 25°  | $A = C_6 H_{13} + A = A = C_6 H_{13} + A = A = C_6 H_{13} + A = A = A = A = A = A = A = A = A = A$                                                                                   |                | 628   |
| c.                  | СНО        | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 24 h, heat                                                                                                     | (слу) (тау)                                                                                                                                                                          | (85)           | 629   |
| Ċ                   | СНО        | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 24 h, heat                                                                                                     | OH OH                                                                                                                                                                                | (87)           | 629   |
| $\bigcirc$          | СНО        | 30% H2O2, (0-O2NC6H4Se)2, CH2Cl2,<br>97 h, 25°                                                                                                          | O <sub>2</sub> CH + O <sub>2</sub> CH                                                                                                                                                | +(5)*          | 628   |
| CHC                 | )<br>∠C¢H² | 30% H <sub>2</sub> O <sub>2</sub> , (o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>34 h, 25°  | $(40) 	(20)$ $0 	 C_2CH 	 C_6H_5$                                                                                                                                                    | (60)           | 628   |
|                     |            | 90% H <sub>2</sub> O <sub>2</sub> , (o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>22 h, 25°  | $I + HO_2C(CH_2)_3COC_6H_5$ (46) (26)                                                                                                                                                |                |       |
|                     | Ю          | 30% H2O2, (0-O2NC6H4Se)2, CH2Cl2,<br>19 h, 25°                                                                                                          | $\int_{0}^{O_2CH} + \int_{0}^{O_2CH}$                                                                                                                                                |                | 628   |
| C <sub>4</sub> H    | CHO        | 30% H2O2, (0-O2NC6H4Se)2, CH2Cl2,<br>168 h, 25°                                                                                                         | $\begin{array}{c} & & & & \\ C_4H_{9}-t & & C_4H_{9}-t \\ (39) & (25) \\ & & & \\ O_2CH \\ & & & \\ \end{array} + \begin{array}{c} & & O \\ & & O_2CH \\ & & & \\ O_2CH \end{array}$ |                | 628   |
|                     |            | 90% H2O2, (0-O2NC6H4Se)2, CH2Cl2,<br>33 h, 25°                                                                                                          | $I II (17) (69)$ $II + (CH_2)_2 COCH_3 (78) (17)$                                                                                                                                    |                | 628   |
| с.,<br>(E)          | - CH=CHCHO | 30% H <sub>2</sub> O <sub>2</sub> , (o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>168 h, 25° | (E)- CH=CHO <sub>2</sub> CH                                                                                                                                                          | (72)<br>+(8)*  | 628   |
|                     |            | MCPBA (2 eq), CH2Cl2, 31 h, 25°                                                                                                                         | 1                                                                                                                                                                                    | (54)<br>+(33)* | 628   |

TABLE VIII. REACTIONS OF  $\alpha$ ,  $\beta$ -UNSATURATED ALDEHYDES (Continued)

| _   | Reactant                             | Conditions                                                                                                                                              | Product(s) and Yield(s) (%)                                                      |                | Refs.    |
|-----|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------|----------|
|     | CHO<br>C <sub>6</sub> H <sub>5</sub> | 30% H2O2, (~O2NC6H4Se)2, CH2Cl2,<br>105 h, 25°                                                                                                          | $O_2CH + O_2CH = O_2CH$                                                          |                | 628      |
| C14 | СНО                                  | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 24 h, heat                                                                                                     | (в) (в)                                                                          | (80)           | 629      |
|     | СНО                                  | 30% H2O2, (0-O2NC6H4Se)2, CH2Cl2,<br>79 h, 25°                                                                                                          | O <sub>2</sub> CH                                                                | (94)           | 628      |
|     | СССТАСНО                             | 30% H2O2, (0-O2NC6H4Se)2, CH2Cl2,<br>33 h, 25°                                                                                                          | O <sub>2</sub> CH                                                                | (62)           | 628      |
|     | CHO<br>C <sub>6</sub> H <sub>5</sub> | 30% H2O2, (0-O2NC6H4Se)2, CH2Cl2,<br>124 h, 25°                                                                                                         | C <sub>6</sub> H <sub>5</sub>                                                    | (69)<br>+(12)* | 628      |
| Cıs | СНО                                  | 30% H2O2, (0-O2NC6H4Se)2, CH2Cl2,<br>14 h, 25°                                                                                                          | Corce + Corce                                                                    | +(7)*          | 628      |
|     | C <sub>6</sub> H <sub>5</sub> CHO    | o-O2NC6H4SeO3H, CH2Cl2, 13 h, 25°                                                                                                                       | $C_6H_5 \longrightarrow O_2CH + (C_6H_5)_2COHCHO C_6H_5 H$                       |                | 600, 628 |
|     |                                      | мсрва                                                                                                                                                   | $ \begin{array}{cccc} I & II \\ (92) & (5) \\ I + II \\ (28) & (5) \end{array} $ | +(62)*         | 600      |
| 6.  | носно                                | PAA                                                                                                                                                     | HO                                                                               | (—)            | 626      |
| ~16 | CH0                                  | 30% H2O2, (0-O2NC6H4Se)2, CH2Cl2,<br>123 h, 25°                                                                                                         | TO2CH + CO2CH                                                                    |                | 628      |
|     | C <sub>6</sub> H <sub>5</sub>        | 30% H <sub>2</sub> O <sub>2</sub> , (o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>192 h, 25° | $C_6H_5$ $C_2CH$ $C_6H_5$                                                        | (87)<br>+(9)*  | 628      |
|     |                                      | 90% H2O2, (0-O2NC6H4Se)2, CH2Cl2,<br>18 h, 25°                                                                                                          | <b>I</b>                                                                         | (92)           | 628      |

TABLE VIII. REACTIONS OF  $\alpha$ ,  $\beta$ -UNSATURATED ALDEHYDES (Continued)

| _               | Reactant                                                                                                                       | Conditions                                                                                                                                             | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | Refs | j. |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|----|
|                 |                                                                                                                                | H <sub>2</sub> O <sub>2</sub> , NaOH, HOCH <sub>2</sub> CH <sub>2</sub> OH, 25°                                                                        | $\bigcup_{C_3H_{\tau^i}}^{OH} (60)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 630  |    |
| 764             |                                                                                                                                | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, 15 min                                                                                                       | $\bigcup_{C_3H_{\tau}i}^{O}$ (58)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 631  |    |
| C <sub>17</sub> | CHO<br>C <sub>6</sub> H <sub>5</sub>                                                                                           | 30% H2O2, (0-O2NC6H4Se)2, CH2Cl2,<br>170 h, 25°                                                                                                        | $\bigcup_{I}^{O_2CH} C_6H_5 + \bigcup_{II}^{O} C_6H_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 628  |    |
|                 |                                                                                                                                | 90% H2O2, (0-O2NC6H4Se)2, CH2Cl2,<br>23 h, 25°                                                                                                         | (66) 	(25)  I + II + CO2H  (18) (62) (CH2)2COC6H5  (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 628  |    |
|                 | ℓ-C₄H9 CHO<br>C6H5                                                                                                             | 90% H <sub>2</sub> O <sub>2</sub> , (o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>11 h, 25° | $I = C_4H_9 = C_6H_5 + C_6H_5$ |      | 628  |    |
|                 |                                                                                                                                | 90% H <sub>2</sub> O <sub>2</sub> , (o-O <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> Se) <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,<br>34 h, 25° | (74) 	(7) 	(7) 	(7) 	(7) 	(60) 	(8) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12) 	(12   |      | 628  |    |
| C <sub>20</sub> |                                                                                                                                |                                                                                                                                                        | (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |      |    |
| 745             | (E)-CH <sub>3</sub> (R)C = CHCHO<br>R = CH <sub>3</sub> [CH(CH <sub>3</sub> ) (CH <sub>2</sub> ) <sub>3</sub> ] <sub>3</sub> - | 30% H <sub>2</sub> O <sub>2</sub> , NaOH, or PNPBA, CCl <sub>4</sub> ,<br>24 h, 25°                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (98) | 627  |    |

TABLE VIII. REACTIONS OF  $\alpha$ ,  $\beta$ -UNSATURATED ALDEHYDES (Continued)

|                 | Reactant                                                                                                      | Conditions                                                                                                   | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | Refs |
|-----------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|
| Cs              | C2H50_OC2H5                                                                                                   | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 5 h, 15-30°                                                         | C <sub>2</sub> H <sub>5</sub> O OC <sub>2</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (25) | 632  |
|                 | (C <sub>2</sub> H <sub>5</sub> ) <sub>2</sub> C(OC <sub>2</sub> H <sub>5</sub> ) <sub>2</sub>                 | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 2.5 h, 15-30°                                                       | $C(OC_2H_5)_4 + (C_2H_5O)_2CO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 632  |
|                 | $C_2H_5$                                                                                                      | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 72 h, 15-30°                                                        | (18) (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0)  | 632  |
| C,              | C2H50 OC2H5                                                                                                   | 1. MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 40 h, 15–30°<br>2. HCl–H <sub>2</sub> O<br>3. LiAIH <sub>4</sub> | OH<br>OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (65) | 632  |
| C <sub>10</sub> | O<br>H<br>OCH <sub>3</sub>                                                                                    | 30% H <sub>2</sub> O <sub>2</sub> , AcOH, 6-7 h, 25°                                                         | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $ | (81) | 111  |
|                 | C <sub>2</sub> H <sub>5</sub> O<br>OC <sub>2</sub> H <sub>5</sub><br>C <sub>4</sub> H <sub>9</sub> - <i>t</i> | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 9 h, 15-30°                                                         | C <sub>2</sub> H <sub>5</sub> O<br>O<br>O<br>O<br>O<br>O<br>C <sub>2</sub> H <sub>5</sub><br>O<br>O<br>C <sub>2</sub> H <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (30) | 632  |
|                 |                                                                                                               | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 8.5 h, reflux                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (40) | 633  |
|                 |                                                                                                               | 1. MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 13 h, 15-30°<br>2. HCl<br>3. LiAlH <sub>4</sub>                  | HO(CH <sub>2</sub> ) <sub>2</sub> CH(C <sub>4</sub> H <sub>9</sub> - <i>t</i> ) (CH <sub>2</sub> ) <sub>2</sub> OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (59) | 632  |
| C <sub>II</sub> | сн <sub>3</sub> о                                                                                             | 30% H <sub>2</sub> O <sub>2</sub> , AcOH, 6–7 h, 25°                                                         | 0 = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (60) | 111  |
| C <sub>12</sub> | C <sub>6</sub> H <sub>5</sub><br>CH <sub>3</sub> O                                                            | 30% H <sub>2</sub> O <sub>2</sub> , AcOH, 6-7 h                                                              | $CH_{3}CO_{C_{6}H_{5}} + C_{6}H_{5}CH = C(COCH_{3})CH_{2}CO_{2}H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (95) | 111  |
| -               | ocity                                                                                                         |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |      |
| Cıı             | C2H50 OC2H5                                                                                                   | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 6 h, 15-30°                                                         | $C_2H_5O$ $OC_2H_5$ $OC_2H_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (37) | 632  |

TABLE IX. PERACID REACTIONS WITH KETALS AND ACETALS

|                                          | Reactant                                                            | Conditions                                                                                         | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | Refs. |
|------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|
| Å                                        | C <sub>6</sub> H <sub>5</sub>                                       | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 24 h, 0°                                                  | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ | (—)  | 634   |
| Â                                        | С <sub>6</sub> Н5<br>Н                                              | 1. 80% MCPBA, CCl <sub>4</sub> , 12 h, 25°<br>2. Florisil, ether                                   | + $CH_3CO_2$<br>HO<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>HO<br>H<br>HO<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>H<br>HO<br>H<br>H<br>HO<br>H<br>HO<br>H<br>H<br>HO<br>H<br>H<br>HO<br>H<br>H<br>HO<br>H<br>H<br>HO<br>H<br>H<br>HO<br>H<br>H<br>HO<br>H<br>H<br>H<br>HO<br>H<br>H<br>H<br>HO<br>H<br>H<br>H<br>H<br>HO<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H                                                                                                                         |      | 634   |
| C <sub>2</sub> H <sub>5</sub> O          | OC <sub>2</sub> H <sub>5</sub><br>C <sub>8</sub> H <sub>17</sub> -n | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 8.5 h, reflux                                             | (33) (26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (5)  | 633   |
| Å                                        | JaC6Hs                                                              | MCPBA, CCI4                                                                                        | OH<br>OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (46) | 634   |
| Å                                        | C <sub>6</sub> H <sub>5</sub>                                       | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 12 h, 25°                                                 | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 634   |
|                                          | C <sub>6</sub> H <sub>5</sub>                                       | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 12 h, 25°                                                 | $C_{6}H_{5} + O + C_{6}H_{5} + Unknown$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 634   |
|                                          | C <sub>2</sub> H <sub>5</sub>                                       | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 12 h, 25°                                                 | (26) (12) (29)<br>$C_{2}H_{5} + CH_{3}CO_{2} - C_{6}H_{5}$<br>HO<br>$C_{2}H_{5} + CH_{3}CO_{2} - C_{6}H_{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 634   |
| <i>n</i> -C <sub>7</sub> H <sub>15</sub> | $C(OC_2H_5)_2C_7H_{15}-n$                                           | 1. MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 5 h, 15-30°<br>2. HCl<br>3. LiAlH <sub>4</sub> , ether | (—) (9)<br><i>n</i> -C <sub>7</sub> H <sub>15</sub> OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (75) | 632   |

TABLE IX. PERACID REACTIONS WITH KETALS AND ACETALS (Continued)



|                 | Reactant                                                                         | Conditions                                             | Product(s) and Yield(s) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | Refs.    |
|-----------------|----------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|
| C <sub>19</sub> | (C <sub>6</sub> H <sub>5</sub> ) <sub>2</sub> C=NCOC <sub>6</sub> H <sub>5</sub> | MCPBA, CICH <sub>2</sub> CH <sub>2</sub> Cl, 1 h, heat | $(C_6H_5CO)_2NH + C_6H_5OH$<br>(67%) (58%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 646      |
|                 | CH <sub>3</sub> O<br>CH <sub>3</sub> O                                           | MCPBA, CH <sub>2</sub> Cl <sub>2</sub> , 6.5 h, 25°    | CH <sub>3</sub> O O <sub>2</sub> CH<br>OCH <sub>3</sub> O O<br>OCH <sub>3</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (60) | 597      |
| C <sub>20</sub> |                                                                                  |                                                        | ~~0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |          |
|                 |                                                                                  | MCPBA, TFAA, HMPA, 1 h, 25°                            | N(CH <sub>3</sub> )CHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (79) | 647      |
| C <sub>21</sub> | $(C_6H_5)(p-CH_3OC_6H_4)C = NCOC_6H_5$                                           | MCPBA, CICH <sub>2</sub> CH <sub>2</sub> Cl, 1 h, heat | $(C_6H_5CO)_2NH + p-CH_3OC_6H_4OH$<br>(67%) (57%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 646      |
|                 | CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O                      | MCPBA, HMPA, 4 h, 25°                                  | CH <sub>3</sub> O<br>CH | (39) | 647, 648 |
|                 |                                                                                  |                                                        | + CH <sub>3</sub> O (CH <sub>3</sub> O)<br>CH <sub>3</sub> O (CH <sub>3</sub> )CHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (4)  |          |
|                 | CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O                      | MCPBA, HMPA, 0.5 h, 70-80°                             | CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>CH <sub>3</sub> O<br>OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (56) | 647      |
| c               | CH <sub>3</sub> O<br>OCH <sub>3</sub> O                                          | MCPBA, HMPA, 5 h, 40°                                  | CH <sub>3</sub> O<br>OCH <sub></sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (71) | 647, 648 |
| C2              |                                                                                  | 35% H <sub>2</sub> O <sub>2</sub> , DMF, 15 h, 25°     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (53) | 644      |
| C <sub>27</sub> | $BnO \xrightarrow{(1)}_{OCH_{2}} N^{+}_{CH_{3}} CI^{-}$                          | MCPBA, HMPA, 1 h, 40°                                  | $C_2H_5$<br>BnO $OH$ $N(CH_3)CHO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (78) | 647      |
|                 | 0013                                                                             |                                                        | OCH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |          |

TABLE X. PERACID REACTIONS WITH NITROGEN DERIVATIVES OF KETONES AND ALDEHYDES (Continued)

TABLE X. PERACID REACTIONS WITH NITROGEN DERIVATIVES OF KETONES AND ALDEHYDES (Continued)



## 7. Acknowledgements

The author wishes to acknowledge Thomas Johns, Jessica Krow, Chris Wanjek, Edward Murphy, Dolores Michalak, and Andrea Lang for assistance in the literature search; Robert Joyce, Jeff Press, David Zacharias, Andrew Kende, and Milan Uskokovic for valuable suggestions concerning the preparation of this manuscript; and the many chemists who generously provided unpublished information.

## References

- 1. A. Baeyer and V. Villiger, Ber., 32, 3625 (1899); *ibid.*, 33, 858 (1900).
- 2. C. H. Hassall, Org. React., 9, 73 (1957).
- 3. B. Plesnicar, in *Oxidation in Organic Chemistry*, Part C, W. S. Trahanovsky, Ed., Academic, New York, 1978, p. 254.
- 4. P. A. S. Smith, *Molecular Rearrangements*, Vol. I, P. de Mayo, (Ed.), Interscience, New York, 1963, p. 577.
- 5. H. O. House, *Modern Synthetic Reactions*, Benjamin, New York, 1972, p. 327.
- 6. J. B. Lee and B. C. Uff, Quart. Rev. (London), 21, 429 (1967).
- S. N. Lewis, in *Oxidation*, Vol. 1, R. L. Augustine, Ed., Dekker, New York, 1969, p. 213.
- 8. J. E. Leffler, Chem. Rev., 45, 385 (1949).
- 9. G. R. Krow, Tetrahedron, 37, 2697 (1981).
- (a) A. J. Waring, in *Comprehensive Organic Chemistry*, Vol. 1, D. H. R. Barton and W. D. Ollis, Eds., Pergamon, 1979, p. 1017. (b) E. W. Colvin, *ibid.*, vol. 2, p. 593. (c) S. M. Roberts, *ibid.*, vol. 2, p. 739. (d) J. M. Brown, *ibid.*, vol. 2, p. 779. (e) I. O. Sutherland, *ibid.*, vol. 2, p. 869. (f) A. F. Hegarty, *ibid.*, vol. 2, p. 1105. (g) T. Laird, *ibid.*, vol. 1, p. 1105.
- 11. R. Criegee, Justus Liebigs Ann. Chem., 560, 127 (1948).
- 12. Y. Ogata and Y. Sawaki, J. Am. Chem. Soc., 94, 4189 (1972).
- 13. J. A. Berson and S. Suzuki, J. Am. Chem. Soc., 81, 4088 (1959).
- 14. C. A. Bunton, T. A. Lewis, and D. R. Llewellyn, J. Chem. Soc., **1956**, 1226.
- M. F. Hawthorne, W. D. Emmons, and K. S. McCallum, J. Am. Chem. Soc., 80, 6393 (1958).
- M. A. Winnik, V. Stoute, and P. Fitzgerald, J. Am. Chem. Soc., 96, 1977 (1974).
- 17. B. W. Palmer and A. Fry, J. Am. Chem. Soc., 92, 2580 (1970).
- M. Rubio, R. Cetina, and A. Bejarano, Afinidad, 40, 176 (1983) [C. A., 99, 104546 (1983)].
- V. A. Stoute, M. A. Winnik, and I. G. Csizmadia, J. Am. Chem. Soc., 96, 6388 (1974).
- 20. T. Mitsuhashi, H. Miyadera, and O. Simamura, J. Chem. Soc., Chem. Commun., **1970**, 1301.
- 21. M. A. Winnik and V. Stoute, Can. J. Chem., 51, 2788 (1973).
- 22. W. Fitzpatrick and J. D. Gettler, J. Am. Chem. Soc., 78, 530 (1956).
- 23. M. F. Hawthorne and W. D. Emmons, J. Am. Chem. Soc., **80**, 6398 (1958).

- 24. G. Manivannan and P. Maruthamuthu, J. Chem. Soc., Perkin Trans. 2, 1986, 565.
- 25. G. P. Panigrahi and R. N. Nayak, Indian J. Chem., Sect. A, **21**, 701 (1982).
- R. Renganathan and P. Maruthamuthu, J. Chem. Soc., Perkin Trans. 2, 1986, 285.
- 27. Y. Ogata and Y. Sawaki, J. Org. Chem., **34**, 3985 (1969).
- 28. Y. Ogata, K. Tomizawa, and T. Ikeda, J. Org. Chem., 43, 2417 (1978).
- 29. Y. Ogata and Y. Sawaki, J. Org. Chem., 37, 2953 (1972).
- R. Panda, A. K. Panigrahi, C. Patnaik, S. K. Sahu, and S. K. Mahapatra, Bull. Chem. Soc. Jpn., 61, 1363 (1988).
- 31. Y. Sawaki and C. S. Foote, J. Am. Chem. Soc., **105**, 5035 (1983).
- 32. H. Kwart and N. J. Wegemer, J. Am. Chem. Soc., 83, 2746 (1961).
- 33. Y. Furuya and I. Urasaki, Bull. Chem. Soc. Jpn., 41, 660 (1968).
- 34. J. C. Robertson and A. Swelin, Tetrahedron Lett., 1967, 2871.
- 35. H. Kwart, P. S. Starcher, and S. W. Tinsley, J. Chem. Soc., Chem. Commun., **1967**, 335.
- M. Camporeale, T. Fiorani, L. Troisi, W. Adam, R. Curci, and J. O. Edwards, J. Org. Chem., 55, 93 (1990).
- 37. S. Chandrasekhar and C. D. Roy, Tetrahedron Lett., 1987, 6371.
- R. Noyori, T. Sato, and H. Kobayashi, Bull. Chem. Soc. Jpn., 56, 2661 (1983).
- 39. R. Noyori, T. Sato, and H. Kobayashi, Tetrahedron Lett., **1980**, 2569.
- 40. R. Noyori, T. Sato, and H. Kobayashi, Tetrahedron Lett., **1980**, 2573.
- 41. E. Bosone, P. Farina, G. Guazzi, S. Innocenti, and V. Marotta, Synthesis, **1983**, 942.
- 42. W. D. Emmons and G. B. Lucas, J. Am. Chem. Soc., 77, 2287 (1955).
- 43. R. T. Taylor and L. A. Flood, J. Org. Chem., 48, 5160 (1983).
- 44. R. W. White and W. D. Emmons, Tetrahedron, 17, 31 (1962).
- 45. R. R. Sauers and R. W. Ubersax, J. Org. Chem., 30, 3939 (1965).
- 46. J. D. McClure and P. H. Williams, J. Org. Chem., 27, 24 (1962).
- 47. W. Adam and A. Rodriguez, J. Org. Chem., 44, 4969 (1979).
- 48. A. N. H. Yeo, J. Chem. Soc. (D), **1971**, 609.
- 49. H. Weber, J.- Seibl, and D. Arigoni, Helv. Chim. Acta, 49, 741 (1966).
- 50. R. Sobti and S. Dev, Tetrahedron, 30, 2927 (1974).
- 51. M. C. Dasai, C. Singh, H. P. S. Chawla, and S. Dev, Tetrahedron, **38**, 201 (1982).

- 52. P. R. Brook and B. V. Brophy, J. Chem. Soc., Perkin Trans. 1, **1985**, 2509.
- T. Mase, J. Ichita, J. P. Marino, and M. Koreeda, Tetrahedron Lett., 1989, 2075.
- 54. A. P. Marchand and M. N. Deshpande, J. Org. Chem., 54, 3226 (1989).
- 55. M. Shiozaki, N. Ishida, H. Maruyama, and T. Hiraoka, Tetrahedron, **39**, 2399 (1983).
- 56. M. Ikeda, K. Ohno, M. Takahashi, T. Uno, Y. Tamura, and M. Kido, J. Chem. Soc., Perkin Trans. 1, **1982**, 741.
- 57. N. Nakamura and K. Sakai, Tetrahedron Lett., **1978**, 1549.
- S. E. Hall, W.-C. Han, M. F. Haslanger, D. N. Harris, and M. L. Ogletree, J. Med. Chem., 29, 2335 (1986).
- P. M. Wovkulich, F. Barcelos, A. D. Batcho, J. F. Sereno, E. G. Baggiolini, B. M. Hennessy, and M. R. Uskokovic, Tetrahedron, 40, 2283 (1984).
- B. M. Trost, P. R. Bernstein, and P. C. Funfschilling, J. Am. Chem. Soc., **101**, 4378 (1979).
- 61. J. A. Tino, M. D. Lewis, and Y. Kishi, Heterocycles, 25, 97 (1987).
- 62. L. R. R-A. Franke, H. Wolf, V. Wray, Tetrahedron, 40, 3491 (1984).
- R. T. Aplin, R. P. K. Chan, and T. G. Halsall, J. Chem. Soc. (C), **1969**, 2322.
- R. B. Mitra, B. G. Mahamulkar, and G. H. Kulkarni, Synthesis, **1984**, 428.
- 65. D. J. Hart and Y-M. Tsai, J. Am. Chem. Soc., 106, 8209 (1984).
- 66. E. J. Corey and J. G. Smith, J. Am. Chem. Soc., **101**, 1038 (1979).
- 67. B. A. Pearlman, J. Am. Chem. Soc., 101, 6404 (1979).
- A. K. Mandal, D. P. Borude, R. Armugasamy, N. R. Soni, D. G. Yawalker, S. W. Mahajan, K. R. Ratnam, and A. D. Goghare, Tetrahedron, 42, 5715 (1986).
- 69. N. Furukawa, T. Yoshimura, M. Ohtsu, T. Akasaka, and S. Oae, Tetrahedron, **36**, 73 (1980).
- A. K. Singhal, R. P. Sharma, J. N. Baruah, and W. Herz, Chem. Ind. (London), **1982**, 549.
- 71. T. Greibrokk, Acta Chem. Scand., 27, 3365 (1973).
- 72. W. Cocker and D. H. Grayson, J. Chem. Soc., Perkin Trans. 1, **1975**, 1347.
- 73. D. Wenkert, K. M. Eliasson, and D. Rudisill, J. Chem. Soc., Chem. Commun., **1983**, 393.
- I. Isaka, T. Kojima, and M. Murakami, Yakugaku Zasshi, 88, 71 (1968)
   [C. A., 69, 18778u (1968)].

- 75. J. D. White and Y. Fukuyama, J. Am. Chem. Soc., 101, 226 (1979).
- 76. H. O. House and W. F. Gannon, J. Org. Chem., 23, 879 (1958).
- 77. W. Cocker, H. S. J. Lauder, and P. V. R. Shannon, J. Chem. Soc. Perkin 1, **1974**, 194.
- 78a. C. P. Patnaik, S. N. Mohapatro, A. K. Panigrahi, and R. S. Pandra, Bull. Chem. Soc. Jpn., **60**, 3391 (1987).
- 78. G. B. Payne, J. Org. Chem., 26, 4793 (1961).
- 79. H. Wetter, Helv. Chim. Acta, 64, 761 (1981).
- 79a. C. W. Bird and A. K. Dotse, Tetrahedron Lett., **1991**, 2413.
- 80. D. L. Coffen and D. A. Katonak, Helv. Chim. Acta, 64, 1645 (1981).
- 81. S. Middleton and L. E. Stock, Aust. J. Chem., 33, 2467 (1980).
- M. Galteri, P. H. Lewis, S. Middleton, and L. E. Stock, Aust. J. Chem., 33, 101 (1980).
- H. Suemune, H. Maruoka, S. Saeki, and K. Sakai, Chem. Pharm. Bull., 34, 4629 (1986).
- D. Seebach, M. Pohmakotr, S. Schregenberger, B. Weidmann, R. S. Mali, and S. Pohmakotr, Helv. Chim. Acta, 65, 419 (1982).
- 85. P.-U. Park and A. P. Kozikowski, Tetrahedron Lett., 1988, 6703.
- 86. D. P. Curran, S. A. Scanga, and C. J. Fenk, J. Org. Chem., **49**, 3474 (1984).
- 87. D. Gani and D. W. Young, J. Chem. Soc., Chem. Commun., **1982**, 867.
- 88. D. Gani and D. W. Young, J. Chem. Soc., Perkin Trans. 1, 1983, 2393.
- 89. D. Gani and D. W. Young, J. Chem. Soc., Perkin Trans. 1, 1985, 1355.
- 90. D. Gani and D. W. Young, J. Chem. Soc., Chem. Commun., 1983, 576.
- 91. P. Choay, C. Monneret, and Q. Khuong-Huu, Tetrahedron, **34**, 1529 (1978).
- 92. D. A. Evans, E. W. Thomas, and R. E. Cherpeck, J. Am. Chem. Soc., 104, 3695 (1982).
- 93. W. Kreiser and L. Janitschke, Chem. Ber., **112**, 408 (1979).
- 94. P. F. Hudrlik, A. M. Hudrlik, G. Nagendrappa, T. Yimenu, E. T. Zellers, and E. Chin, J. Am. Chem. Soc., **102**, 6894 (1980).
- 95. H. Bretschneider, K. Hohenlohe-Oehringen, A. Kaiser, and U. Wolcke, Helv. Chim. Acta, **56**, 2857 (1973).
- X. Rugang, C. Yiqing, Y. Deqi, and J. Hongqiang, Youji Huaxue, 7, 297 (1984) [C.A., 102, 5190w (1985)].
- 97. R. Trave and A. Sacco, Rend. Ist. lombardo Sci., Pt. I., Classe Sci. Mat. e Nat., 94A, 273 (1960) [C.A., 55, 16462b (1961)].
- 98. W. Czuba and C. Walkowicz, Pol. J. Chem., 57, 333 (1983).
- 99. A. O. Fitton, M. Kosmirak, H. Suschitzky, and J. L. Suschitzky,

Tetrahedron Lett., 1982, 3953.

- 100. P. A. Crooks, L. A. Damani, and D. A. Cowan, Chem. Ind. (London), **1981**, 335.
- 101. E. Caspi and S. N. Balasubrahmanyam, J. Org. Chem., **28**, 3383 (1963).
- 102. J. Rebek, R. McCready, S. Wolf, and A. Mossman, J. Org. Chem., **44**, 1485 (1979).
- 103. S. Ranganathan, D. Ranganathan, and M. M. Mehrotra, Synthesis, **12**, 838 (1977).
- 104. N. Koizumi, M. Morisaki, N. Ikekawa, Y. Tanaka, and H. F. DeLuca, J. Steroid Biochem., **10**, 261 (1979).
- 105. E. G. Baggiolini, J. A. Iacobelli, B. M. Hennessy, and M. R. Uskokovic, J. Am. Chem. Soc., **104**, 2945 (1982).
- 106. J. R. Handley, A. A. Swigar, and R. M. Silverstein, J. Org. Chem., **44**, 2954 (1979).
- 107. S.-F. Lee, M. Edgar, C. S. Pak, G. Barth, and C. Djerassi, J. Am. Chem. Soc., **102**, 4784 (1980).
- 108. V. Askam and D. M. Bradley, J. Chem. Soc. (C), 1971, 1895.
- 109. J. R. Williams and J. D. Leber, Synthesis, 1977, 427.
- 110. S. L. Schreiber and W.-F. Liew, Tetrahedron Lett., 1983, 2363.
- 111. H.-J. Liu and P. C.-L. Yao, Can. J. Chem., 55, 822 (1977).
- 112. E. Keinan, K. K. Seth, and R. Lamed, J. Am. Chem. Soc., **108**, 3474 (1986).
- 113. E. E. Smissman, J. P. Li, and Z. H. Israili, J. Org. Chem., **33**, 4231 (1968).
- 114. A. McKillop and J. A. Tarbin, Tetrahedron, 43, 1753 (1987).
- M. B. Hocking, K. Bhandari, B. Shell, and T. A. Smyth, J. Org. Chem., 47, 4208 (1982).
- 116. S. W. Pelletier and Y. Ohtsuka, Tetrahedron, **33**, 1021 (1977).
- 117. E. Wenkert and D. P. Strike, J. Am. Chem. Soc., 86, 2044 (1964).
- 118. T. Nambara, S. Honma, and S. Akiyama, Chem. Pharm. Bull., **18**, 474 (1970).
- 119. R. G. Xie, L. S. Deng, H. Q. Gu, Y. M. Fan, and H. M. Zhao, Steroids, **40**, 389 (1982).
- 120. S.-I. Nakatsuka, K. Ueda, O. Asano, and T. Goto, Heterocycles, **26**, 65 (1987).
- 121. S.-I. Nakatsuka, O. Asano, K. Ueda, and T. Goto, Heterocycles, **26**, 1471 (1987).
- 122. K. Maruyama, Bull. Chem. Soc. Jpn., 33, 1516 (1960).

- 123. K. Maruyama, Bull. Chem. Soc. Jpn., **34**, 105 (1961).
- 124. K. Maruyama, H. Iwamoto, O. Soga, and A. Takuwa, Bull. Chem. Soc. Jpn., **55**, 2161 (1982).
- 125. W. H. Saunders, Jr., J. Am. Chem. Soc., 77, 4679 (1955).
- 126. J. M. Blatchly, D. V. Gardner, and J. F. W. McOmie, J. Chem. Soc. (C), **1967**, 272.
- 127. J. M. Blatchly, J. F. W. McOmie, and S. D. Thatte, J. Chem. Soc., **1962**, 5090.
- 128. G. Grethe, J. Sereno, T. H. Williams, and M. R. Uskokovic, J. Org. Chem., **48**, 5315 (1983).
- 129. V. V. Kane and D. L. Doyle, Tetrahedron Lett., 1981, 3027.
- 130. R. Zibuck, N. J. Liverton, and A. B. Smith, III, J. Am. Chem. Soc., **108**, 2451 (1986).
- 131. T. Ohnuma, N. Hata, N. Miyachi, T. Wakamatsu, and Y. Ban, Tetrahedron Lett., **1986**, 219.
- 132. R. Baker, D. C. Billington, and N. Ekanayake, J. Chem. Soc., Perkin Trans. 1, **1983**, 1387.
- 133. P. M. Wovkulich and M. R. Uskokovic, J. Org. Chem., 47, 1600 (1982).
- 134. C. Luthy, P. Konstantin, and K. G. Untch, J. Am. Chem. Soc., **100**, 6211 (1978).
- 135. K. Mori and M. Fujiwhara, Tetrahedron, 44, 343 (1988).
- 136. K. Prasad and O. Repic, Tetrahedron Lett., 1984, 2435.
- 137. P. C. B. Page, J. F. Carefull, L. H. Powell, and I. O. Sutherland, J. Chem. Soc., Chem. Commun., **1985**, 822.
- 138. T. Hiral, Y. Fujihara, K. Kurokawa, Y. Ohshiro, and T. Agawa, J. Org. Chem., **51**, 2830 (1986).
- 139. G. Pattenden and S. J. Teague, Tetrahedron, **43**, 5637 (1987).
- 140. G. Magnusson, Tetrahedron, 34, 1385 (1978).
- 141. K. Mori and S. Kuwahara, Tetrahedron, 42, 5539 (1986).
- 142. T. Fukuyama, C.-L. J. Wang, and Y. Kishi, J. Am. Chem. Soc., **101**, 260 (1979).
- 143. J. D. Rozzel, Jr. and S. A. Benner, J. Org. Chem., 48, 1190 (1983).
- 144. E. J. Corey, S. Kim, S. Yoo, K. C. Nicolaou, L. S. Melvin, Jr., D. J. Brunelle, J. R. Falck, E. J. Trybulski, R. Lett, and P. W. Sheldrake, J. Am. Chem. Soc., **100**, 4620 (1978).
- 145. K. Narasaka, T. Sakakura, T. Uchimaru, D. Guedin-Vuong, J. Am. Chem. Soc., **106**, 2954 (1984).
- 146. C. Houge, A. M. Frisque-Hesbain, A. Mockel, and L. Ghosez, J. Am. Chem. Soc., **104**, 2920 (1982).

- 147. J. A. Horton, M. A. Laura, S. M. Kalbag, and R. C. Petterson, J. Org. Chem., **34**, 3366 (1969).
- 148. M. Bogdanowicz, T. Ambelang, and B. M. Trost, Tetrahedron Lett., **1973**, 923.
- 149. J. L. Mateos and H. Menchaca, J. Org. Chem., 29, 2026 (1964).
- 150. H. Bestian and D. Gunther, Angew. Chem., Int. Ed. Engl., **75**, 841 (1963).
- 151. A. E. Greene, J. P. Depres, H. Nagano, and P. Crabbe, Tetrahedron Lett., **1977**, 2365.
- 152. M. Braun, R. Dammann, and D. Seebach, Chem. Ber., **108**, 2368 (1975).
- 153. W. T. Brady and T. C. Cheng, J. Org. Chem., **41**, 2036 (1976).
- 154. F. Kazmierczak and P. Helquist, J. Org. Chem., 54, 3988 (1989).
- 155. U. A. Schaper and K. Bruns, U.S. Pat. 4,212,773 (1980) [C. A., **92**, P 135123n (1980)].
- 156. E. Demole and M. Winter, Helv. Chim. Acta, 45, 1256 (1962).
- 157. J. R. Rocca, J. H. Tumlinson, B. M. Glancey, and C. S. Lofgren, Tetrahedron Lett., **1983**, 1893.
- 158. A. Ijima and K. Takahashi, Chem. Pharm. Bull., **21**, 215 (1973).
- 159. A. Ijima, H. Mizuno, and K. Takahashi, Chem. Pharm. Bull., **20**, 197 (1972).
- J. C. Barrish, H. L. Lee, T. Mitt, G. Pizzolato, E. G. Baggioline, and M. R. Uskokovic, J. Org. Chem., **53**, 4282 (1988).
- 161. A. D. Baxter, S. M. Roberts, B. J. Wakefield, and G. T. Woolley, J. Chem. Soc., Perkin Trans. 1, **1984**, 675.
- 162. M. Tanabe, K. Hayashi, S. Harada, and E. G. Taylor in *Biologically Active Principles of Natural Products*, W. Voelter and D. G. Daves, Eds., Georg Thieme Verlag, New York, 1984, p. 66.
- 163. S. Hanessian, G. Garganico, and M. Petrini, unpublished.
- 164. K. Lane and A. Pinder, J. Org. Chem., 47, 3171 (1982).
- 165. S. Hanessian, D. S. Dhanoa, and P. L. Beaulieu, Can. J. Chem., **65**, 1859 (1987).
- 166. K. Matsuo and K. Tanaka, Chem. Pharm. Bull., 29, 3070 (1981).
- 167. K. Mori and S. Kuwahara, Tetrahedron, 42, 5545 (1986).
- 168. V. V. Kane, D. L. Doyle, and P. C. Ostrowski, Tetrahedron Lett., **1980**, 2643.
- 169. M. S. Ahmad and F. Waris, Indian J. Chem., Sect. B, **15**, 919 (1977).
- 170. T. Sato, M. Watanabe, N. Honda, and T. Fujisawa, Chem. Lett., **1984**, 1175.

- 171. Y. V. Tanchuk, S. L. Kotenko, and T. P. Voloshchuk, Ukr. Khim. Zh. (Russ. Ed.), 46, 763 (1980) [C.A., 93, 238795 (1980)].
- 172. J. Ouazzani-Chahdi, D. Buisson, and R. Azerad, Tetrahedron Lett., **1987**, 1109.
- 173. J. d'Angelo and G. Revial, Tetrahedron Lett., 1983, 2103.
- 174. J. S. Clark and A. B. Holmes, Tetrahedron Lett., 1988, 4333.
- 175. A. I. Meyers, D. R. Williams, S. White, and G. W. Erickson, J. Am. Chem. Soc., **103**, 3088 (1981).
- 176. R. Kaiser and D. Lamparsky, Helv. Chim. Acta, 61, 2671 (1978).
- 177. W. H. Kruizinga and R. M. Kellogg, J. Am. Chem. Soc., **103**, 5183 (1981).
- 178. W. H. Kruizinga and R. M. Kellogg, J. Chem. Soc., Chem. Commun., 1979, 286.
- 179. G. L. Guillanton, Bull. Soc. Chim. Fr., 1969, 2871.
- 180. N. Hoshi, H. Hagiwara, and H. Uda, Chem. Lett., 1979, 1295.
- 181. F. Mares and S. E. Jacobson, Chem. Ind., 5, 149 (1981).
- 182. S. E. Jacobson, F. Mares, and P. M. Zambri, J. Am. Chem. Soc., **101**, 6938 (1979).
- 183. I. J. Jakovac and J. B. Jones, J. Org. Chem., 44, 2165 (1979).
- 184. G. B. Payne, Tetrahedron, **18**, 763 (1962).
- 185. J. K. Crandall and R. J. Seidewand, J. Org. Chem., 35, 697 (1970).
- 186. H. Nemoto, S. Fujita, M. Nagai, K. Fukumoto, and T. Kametani, J. Am. Chem. Soc., **110**, 2931 (1988).
- 187. M. J. Green and H. J. Shue, U.S. Pat. 3,968,132 (1976) [C.A., **85**, 143361j (1976)].
- L. A. Paquette, M. J. Wyvratt, O. Schallner, J. L. Muthard, W. J. Begley, R. M. Blankenship, and D. Balogh, J. Org. Chem., 44, 3616 (1979).
- 189. J. E. Baldwin and P. L. M. Beckwith, J. Chem. Soc., Chem. Commun., **1983**, 279.
- 190. B. M. Trost and M. J. Bogdanowicz, J. Am. Chem. Soc., **95**, 5321 (1973).
- 191. B. M. Trost and A. Brandi, J. Am. Chem. Soc., 106, 5043 (1984).
- 192. M. J. Bogdanowicz, T. Ambeland, and B. M. Trost, Tetrahedron Lett., **1973**, 923.
- 193. M. Bertrand, A. Meou, and A. Tubul, Tetrahedron Lett., 1982, 3691.
- 194. B. M. Trost and M. K.-T. Mao, J. Am. Chem. Soc., 105, 6753 (1983).
- 195. B. M. Trost, J. M. Balkovec, and M. K.-T. Mao, J. Am. Chem. Soc., **108**, 4974 (1986).
- 196. I. J. Borowitz, G. Gonis, R. Kelsey, R. Rapp, and G. J. Williams, J. Org.

Chem., **31**, 3032 (1966).

- G. M. Rubottom, J. M. Gruber, R. K. Boeckman, Jr., M. Ramaiah, and J. B. Medwid, Tetrahedron Lett., **1978**, 4603.
- 198. G. Frater, U. Muller, and W. Gunther, Helv. Chim. Acta, **69**, 1858 (1986).
- 198a. C. Genicot, B. Gobeaux, and L. Ghosez, Tetrahedron Lett., 1991, 3827.
- 199. V. Dave and E. W. Warnhoff, J. Org. Chem., 48, 2590 (1983).
- 200. D. Desmaele and J. d'Angelo, Tetrahedron Lett., **1989**, 345.
- 201. E. E. Smissman and J. V. Bergen, J. Org. Chem., 27, 2316 (1962).
- 202. L. P. Vinogradova, B. A. Rudenko, and S. I. Zav'yalov, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, **1962**, 1436 [C.A., **58**, 2378g (1963)].
- 203. L. P. Vinogradova and S. I. Zav'yalov, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, **1961**, 1482 [C.A., **56**, 338b (1962)].
- 204. L. P. Vinogradova and S. I. Zav'yalov, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, **1961**, 2050 [C.A., **56**, 7147d (1962)].
- 205. A. J. Hubert and P. S. Starcher, J. Chem. Soc. (C), 1968, 2500.
- 206. K. Narasaka and T. Uchimaru, Chem. Lett., 1982, 57.
- 207. P. F. Hudrlik, A. M. Hudrlik, T. Yimenu, M. A. Waugh, and G. Nagendrappa, Tetrahedron, **44**, 3791 (1988).
- 208. M. Asaoka, K. Shima, N. Fuyii, and H. Takei, Tetrahedron, **44**, 4757 (1988).
- 209. M. Asaoka, K. Shima, and H. Takei, Tetrahedron Lett., 1987, 5669.
- 209a. R. J. K. Taylor, K. Wiggins, and D. H. Robinson, Synthesis, 1990, 589.
- 209b. N. K. Chadha, A. D. Batcho, P. C. Tang, L. F. Courtney, C. M. Cook, P. M. Wovkulich, and M. R. Uskokovic, J. Org. Chem., **56**, 4714 (1991).
- 210. D. Levin and S. Warren, Tetrahedron Lett., 1986, 2265.
- 211. M. Cinquini, F. Cozzi, F. Sannicolo, and A. Sironi, J. Am. Chem. Soc., **110**, 4363 (1988).
- 212. B. M. Trost, P. Buhlmayer, and M. Mao, Tetrahedron Lett., 1982, 1443.
- 213. B. M. Trost, J. M. Balkovec, and M. K.-T. Mao, J. Am. Chem. Soc., **105**, 6755 (1983).
- 214. B. M. Trost, Acc. Chem. Res., 11, 453 (1978).
- 215. W. Oppolzer, K. K. Mahalanabis, and K. Battig, Helv. Chim. Acta, **60**, 2388 (1977).
- 216. H. J. Reich, J. M. Renga, and I. L. Reich, J. Am. Chem. Soc., **97**, 5434 (1975).
- 217. G. Stork and M. E. Jung, J. Am. Chem. Soc., 96, 3682 (1974).
- 218. R. Curci, F. DiFuria, J. Ciabattoni, and P. W. Concannon, J. Org. Chem., **39**, 3295 (1974).

- 219. K. Kakiuchi, Y. Hiramatsu, Y. Tobe, and Y. Odaira, Bull. Chem. Soc. Jpn., **53**, 1779 (1980).
- 220. S. Matsubara, K. Takai, and H. Nozaki, Bull. Chem. Soc. Jpn., **56**, 2029 (1983).
- 221. M. Suzuki, H. Takada, and R. Noyori, J. Org. Chem., 47, 902 (1982).
- 222. P. A. Grieco, Y. Yokoyama, S. Gilman, and Y. Ohfune, J. Chem. Soc., Chem. Commun., **1977**, 870.
- 223. P. A. Grieco, T. Oguri, and S. Gilman, J. Am. Chem. Soc., **102**, 5886 (1980).
- 224. J.-P. Depres, A. E. Greene, and P. Crabbe, Tetrahedron, **37**, 621 (1981).
- 225. A. D. Mesmaeker, S. J. Veenstra, and B. Ernst, Tetrahedron Lett., 1988, 459.
- 226. S. M. Ali and S. M. Roberts, J. Chem. Soc., Perkin Trans. 1, **1976**, 1934.
- 227. J. K. Whitesell, R. S. Mathews, and A. M. Helbling, J. Org. Chem., **43**, 784 (1978).
- 228. J. K. Whitesell, R. S. Mathews, M. A. Minton, and A. M. Helbling, J. Am. Chem. Soc., **103**, 3468 (1981).
- 229. C. C. Howard, R. F. Newton, D. P. Reynolds, A. H. Wadsworth, D. R. Kelly, and S. M. Roberts, J. Chem. Soc., Perkin Trans. 1, **1980**, 852.
- 230. Y. Tsunokawa, S. Iwasaki, and S. Okuda, Chem. Pharm. Bull., **31**, 4578 (1983).
- 231. J. Nokami, T. Ono, S. Nakagawa, and S. Wakabayashi, Chem. Lett., **1983**, 1251.
- 232. T. Imanishi, Y. Wada, M. Inoue, and M. Hanaoka, Heterocycles, **16**, 2133 (1981).
- 233. E. J. Corey, Z. Arnold, and J. Hutton, Tetrahedron Lett., 1970, 307.
- 234. P. Ceccherelli, M. Curini, R. Coccia, and N. Cagnoli, J. Chem. Soc., Perkin Trans. 1, **1984**, 589.
- 235. P. A. Grieco, T. Oguri, S. Gilman, and G. T. DeTitta, J. Am. Chem. Soc., **100**, 1616 (1978).
- 236. W. C. Still, S. Murata, G. Revial, and K. Yoshihara, J. Am. Chem. Soc., **105**, 625 (1983).
- 237. P. A. Grieco, J. Org. Chem., 37, 2363 (1972).
- 238. S. M. Ali, T. V. Lee, S. M. Roberts, and R. F. Newton, J. Chem. Soc., Perkin Trans. 1, **1979**, 708.
- 239. S. M. Ali, T. V. Lee, and S. M. Roberts, Synthesis, 1977, 155.
- 240. V. Dave, J. B. Stothers, and E. W. Warnhoff, Can. J. Chem., **58**, 2666 (1980).

- 241. V. Dave, J. B. Stothers, and E. W. Warnhoff, Can. J. Chem., **57**, 1557 (1979).
- 242. A. Hassner, H. W. Pinnick, and J. M. Ansel, J. Org. Chem., **43**, 1774 (1978).
- 243. R. D. Miller, D. L. Dolce, and V. Y. Merritt, J. Org. Chem., **41**, 1221 (1976).
- 244. R. D. Miller, D. L. Dolce, and V. Y. Merritt, Tetrahedron Lett., **1974**, 3347.
- 245. R. J. Ferrier and P. Prasit, Pure Appl. Chem., 55, 565 (1983).
- 246. R. Dammann, M. Braun, and D. Seebach, Helv. Chim. Acta, **59**, 2821 (1976).
- 247. A. B. Smith, III, and R. E. Richmond, J. Org. Chem., 46, 4814 (1981).
- 248. A. B. Smith, III, and R. E. Richmond, J. Am. Chem. Soc., **105**, 575 (1983).
- 249. E. J. Corey, M.-C. Dang, M. C. Desai, A. K. Ghosh, and I. N. Houpis, J. Am. Chem. Soc., **110**, 649 (1988).
- 250. E. J. Corey and A. V. Gavai, Tetrahedron Lett., 1988, 3201.
- 251. G. R. Pettit and J. R. Dias, J. Org. Chem., 37, 973 (1972).
- 252. G. R. Pettit and J. R. Dias, Can. J. Chem., 47, 1091 (1969).
- 253. J. T. Edward and P. F. Morland, Can. J. Chem., 38, 1325 (1960).
- 254. S. W. Baldwin and J. M. Wilkinson, Tetrahedron Lett., 1979, 2657.
- 255. K. Fukumoto, M. Chihiro, M. Ihara, T. Kametani, and T. Honda, J. Chem. Soc., Perkin Trans. 1, **1983**, 2569.
- 256. K. Fukumoto, M. Chihiro, Y. Shiratori, M. Ihara, T. Kametani, and T. Honda, Tetrahedron Lett., **1982**, 2973.
- 257. M. Nakane, R. C. Hutchinsen, D. VanEngen, and J. Clardy, J. Am. Chem. Soc., **100**, 7079 (1978).
- 258. K. Mori and M. Sasaki, Tetrahedron, 36, 2197 (1980).
- 259. L. Skattebol and Y. Stenstrom, Acta Chem. Scand., Ser. B, **39**, 291 (1985).
- 260. P. A. Grieco and J. J. Reap, Synth. Commun., **1975**, 347.
- 261. W. A. Kinney, M. J. Coghlan, and L. A. Paquette, J. Am. Chem. Soc., **107**, 7352 (1987).
- 262. P. A. Grieco, Y. Ohfune, and G. Majetich, J. Am. Chem. Soc., **99**, 7393 (1977).
- 263. I. Ahmad and V. Snieckus, Can. J. Chem., **60**, 2678 (1982).
- 264. H. Kaga, S. Kobayashi, and M. Ohno, Tetrahedron. Lett., 1988, 1057.
- 265. P. A. Jacobi and D. G. Walker, J. Am. Chem. Soc., **103**, 4611 (1981).

- 266. J. E. Bolliger and J. L. Courtney, Aust. J. Chem., 17, 440 (1964).
- 267. V. Dave, J. B. Stothers, and E. W. Warnhoff, Can. J. Chem., **62**, 1965 (1984).
- 268. S. Hara, Chem. Pharm. Bull., **12**, 1531 (1964).
- 269. S. N. Suryawanshi, C. J. Swenson, W. L. Jorgensen, and P. L. Fuchs, Tetrahedron Lett., **1984**, 1859.
- 270. S. N. Suryawanshi and P. L. Fuchs, J. Org. Chem., 51, 902 (1986).
- 271. A. Murai, N. Tanimoto, N. Sakamoto, and T. Masamune, J. Am. Chem. Soc., **110**, 1985 (1988).
- 272. P. A. Grieco, T. Oguri, C.-L. J. Wang, and E. Williams, J. Org. Chem., 42, 4113 (1977).
- 273. S. Takatsuto and N. Ikekawa, Tetrahedron Lett., 1983, 917.
- 274. A. Lardon, J. Schmidlin, A. Wettstein, and T. Reichstein, Helv. Chim. Acta, **40**, 662 (1957).
- 275. H. Suginome and S. Yamada, J. Org. Chem., 50, 2489 (1985).
- 276. M. Baumgarth and K. Irmscher, Tetrahedron, **31**, 3109 (1975).
- 277. M. S. Ahmad, Shafiullah, M. Mushfiz, and M. Asif, Indian J. Chem., 8, 1062 (1970).
- 278. M. S. Ahmad and I. A. Khan, Acta Chim. Acad. Sci. Hung., **106**, 111 (1981) [C.A., **95**, 115855m (1981)].
- 279. R. A. LeMahieu, A. Boris, M. Carson, R. W. Guthrie, and R. W. Kierstead, J. Med. Chem., **16**, 647 (1973).
- 280. N. L. Wendler, D. Taub, and H. L. Slates, J. Am. Chem. Soc., **77**, 3559 (1955).
- 281. E. Caspi, Y. W. Chang, and R. I. Dorfman, J. Med. Pharm. Chem., **5**, 714 (1962).
- 282. E. S. Rothman and M. E. Wall, J. Am. Chem. Soc., 77, 2229 (1955).
- 283. P. Bladon and W. McMeekin, J. Chem. Soc., 1961, 3504.
- 284. T. A. Hase and R. Huikko, Acta Chem. Scand., Ser. B, 32, 467 (1978).
- 285. R. Uusvuori and T. A. Hase, Synth. Commun., **12**, 1081 (1982).
- 286. G. Snatzke and B. Wessling, Justus Liebigs Ann. Chem., 1979, 1028.
- 287. M. S. Ahmad and Z. Farooq, Indian J. Chem., Sect. B, 15, 233 (1977).
- 288. M. S. Ahmad, G. Moinuddin, I. A. Ansari, and S. A. Ansari, Indian J. Chem., Sect. B, **23**, 220 (1984).
- 289. D. Bijelic and M. J. Gasic, Bull. Soc. Chim. Beograd., 44, 393 (1979).
- 290. M. S. Ahmad, M. Asif, and M. Mushfiq, Indian J. Chem., Sect. B, **16**, 426 (1978).
- 291. H. Fukami, H.-S. Koh, T. Sakata, and M. Nakajima, Tetrahedron Lett., **1968**, 1701.

- 292. G. W. Krakower, H. A. V. Dine, P. A. Diassi, and I. Bacso, J. Org. Chem., **32**, 184 (1967).
- 293. S. Rakhit and M. Gut, J. Org. Chem., 29, 229 (1964).
- 294. Y. Odaira, Y. Sakai, Y. Fukuda, T. Negero, F. Hirata, Y. Tobe, and K. Kimura, *ibid.*, **46**, 2977 (1981).
- 295. L. Knof, Justus Liebigs Ann. Chem., 657, 171 (1962).
- 296. L. Knof, *ibid.*, **647**, 53 (1961).
- 297. W. Reusch and R. LeMahieu, J. Am. Chem. Soc., 85, 1669 (1963).
- 298. A. DeBoer and R. E. Ellwanger, J. Org. Chem., **39**, 77 (1974).
- 299. S. D. Levine, J. Org. Chem., **31**, 3189 (1966).
- 300. H. Fukami, H.-S. Koh, T. Sakata, and M. Nakajima, Tetrahedron Lett., **1967**, 4771.
- 301. P. Koll, R. Durrfield, U. Wolfmeier, and K. Heyns, Tetrahedron Lett., **1972**, 5081.
- 302. V. Balogh, J.-C. Beloeil, and M. Fetizon, Tetrahedron, **33**, 1321 (1977).
- 303. M. S. Ahmad, I. A. Khan, and N. K. Pillai, Tetrahedron, 36, 2341 (1980).
- 304. R. C. Cambie and B. D. Palmer, Aust. J. Chem., 34, 1265 (1981).
- 305. P. K. Grant, H. T. Liau, and W. A. Temple, Aust. J. Chem., **32**, 1353 (1979).
- 306. M. S. Ahmad, G. Moinuddin, and I. A. Khan, J. Org. Chem., **43**, 163 (1978).
- 307. A. A. Akhrem, F. A. Lakhvich, V. A. Khripach, and N. V. Kovganko, Dokl. Adad. Nauk SSSR, **269**, 366 (1983) [C.A., **99**, 105584r (1983)].
- 308. A. A. Akhrem, F. A. Lakhvich, V. A. Khripach, N. V. Kovganko, and V. N. Zhabinskii, Dokl. Akad. Nauk SSSR, 283, 130 (1985) [C.A., 104, 34239r (1986)].
- 309. G. J. Fonken and H. M. Miles, J. Org. Chem., 28, 2432 (1963).
- 310. R. C. Cookson, R. P. Gandhi, and R. M. Southam, J. Chem. Soc. (C), **1968**, 2494.
- 311. R. Pozas, R. Cetina, and L. J. Reyes, Rev. Soc. Quim. Mex., 24, 342 (1980) [C.A., 95, 98143h (1981)].
- 312. S. Takatsuto, N. Yazawa, M. Ishiguro, M. Morisaki, and N. Ikekawa, J. Chem. Soc., Perkin Trans. 1, **1984**, 139.
- 313. M. Ishiguro, S. Takatsuto, M. Morisaki, and N. Ikekawa, J. Chem. Soc., Chem. Commun., **1980**, 962.
- 314. M. J. Thompson, W. J. Meudt, N. B. Mandava, S. R. Dutky, W. R. Lusby, and D. W. Spaulding, Steroids, **39**, 89 (1982).
- 315. K. Hayakawa, M. Yodo, S. Ohsuki, and K. Kanematsu, J. Am. Chem. Soc., **106**, 6735 (1984).

- 316. P. E. Sonnet and J. E. Oliver, J. Heterocycl. Chem., 11, 263 (1974).
- 317. R. Achini, Helv. Chim. Acta, 64, 2203 (1981).
- 318. L.-A. Svensson, Acta Chem. Scand., 26, 2372 (1972).
- 319. L. Horner and D. W. Baston, Justus Liebigs Ann. Chem., 1973, 910.
- 320. B. F. Bowden, R. W. Read, and W. C. Taylor, Aust. J. Chem., **34**, 799 (1981).
- 321. H. O. House, J. L. Haack, W. C. McDaniel, and D. VanDerveer, J. Org. Chem., **48**, 1643 (1983).
- 322. A. Rassat and G. Ourisson, Bull. Soc. Chim. Fr., 1959, 1133.
- 323. G. A. Olah, T. Yamato, P. S. Iyer, N. J. Trivedi, B. P. Singh, and G. K. S. Pradesh, Mater. Chem. Phys., **17**, 21 (1987).
- 324. S. Takano, M. Takahashi, S. Hatakeyama, and K. Ogasawara, J. Chem. Soc., Chem. Commun., **1979**, 556.
- 325. S. Takano, M. Takahashi, and K. Ogasawara, J. Am. Chem. Soc., **102**, 4282 (1980).
- 326. S. Takano, S. Hatakeyama, and K. Ogasawara, Tetrahedron Lett., **1978**, 2519.
- 327. S. Takano, Y. Takahashi, S. Hatakeyama, and K. Ogasawara, Heterocycles, **12**, 765 (1979).
- 328. S. Takano, K. Masuda, and K. Ogasawara, J. Chem. Soc., Chem. Commun., **1980**, 887.
- 329. W. R. Roush and T. E. D'Ambra, J. Org. Chem., 46, 5047 (1981).
- 330. W. R. Roush and T. E. D'Ambra, J. Org. Chem., 45, 3927 (1980).
- 331. W. R. Roush and T. E. D'Ambra, J. Am. Chem. Soc., 105, 1058 (1983).
- 332. J. Davies, S. M. Roberts, D. P. Reynolds, and R. F. Newton, J. Chem. Soc., Perkin Trans. 1, **1981**, 1317.
- 333. R. F. Newton, D. P. Reynolds, C. F. Webb, and S. M. Roberts, J. Chem. Soc., Perkin Trans. 1, 1981, 2055.
- 334. P. Deslongchamps, U. O. Cheriyan, Y. Lambert, J.-C. Mercier, L. Ruest, R. Russo, and P. Soucy, Can. J. Chem., **56**, 1687 (1978).
- 335. P. Deslongchamps, Tetrahedron, **31**, 2463 (1975).
- 336. R. F. Newton, D. P. Reynolds, C. F. Webb, S. N. Young, Z. Grudzinski, and S. M. Roberts, J. Chem. Soc., Perkin Trans. 1, **1979**, 2789.
- 337. F. F. Newton and S. M. Roberts in *Chemistry, Biochemistry and Pharmacological Activity of Prostanoids*, S. M. Roberts and F. Scheinmann, Eds. Pergamon, New York, 1971, p. 61.
- 338. T. V. Lee, S. M. Roberts, M. J. Dimsdale, R. F. Newton, D. K. Rainey, and C. F. Webb, J. Chem. Soc., Perkin Trans. 1, **1978**, 1176.
- 339. D. P. Reynolds, R. F. Newton, and S. M. Roberts, J. Chem. Soc., Chem. Commun., **1979**, 1150.

- 340. R. Peel and J. K. Sutherland, *ibid.*, **1974**, 151.
- 341. M. A. W. Finch, S. M. Roberts, G. T. Woolley, and R. F. Newton, J. Chem. Soc., Perkin Trans. 1, **1981**, 1725.
- 342. S. M. Ali, M. A. W. Finch, S. M. Roberts, and R. F. Newton, J. Chem. Soc., Chem. Commun., **1980**, 74.
- 343. N. R. A. Beeley, R. Peel, J. K. Sutherland, J. J. Holohan, K. B. Mallion, and G. J. Sependa, Tetrahedron, **37**, Supp. No. 9, 411 (1981).
- 344. N. R. A. Beeley and J. K. Sutherland, J. Chem. Soc., Chem. Commun., 1977, 321.
- 345. M. J. Dimsdale, R. F. Newton, D. K. Rainey, C. F. Webb, T. V. Lee, and S. M. Roberts, J. Chem. Soc., Chem. Commun., **1977**, 716.
- 346. I. Stibor, J. Palecek, I. Vesely, J. Stanek, K. Capek, V. Kubelka, V. Dedek, J. Jary, and J. Mostecky, Czech. Pat. 223,402 (1986) [C.A., 105, 226167h (1986)].
- 347. E. W. Collington, H. Finch, and C. J. Wallis, Tetrahedron Lett., **1983**, 3121.
- 348. A. Guzman and P. Crabbe, Chem. Lett., **1973**, 1073.
- 349. A. Grudzinski, S. M. Roberts, C. Howard, and R. F. Newton, J. Chem. Soc., Perkin Trans. 1, **1978**, 1182.
- 350. N. M. Crossland, S. M. Roberts, R. F. Newton, and C. F. Webb, J. Chem. Soc., Chem. Commun., **1978**, 660.
- 351. R. J. Cave, R. F. Newton, D. P. Reynolds, and S. M. Roberts, J. Chem. Soc., Perkin Trans. 1, **1981**, 646.
- 352. S. Takano, N. Kubodera, H. Iwata, and K. Ogasawara, Chem. Pharm. Bull., **27**, 2582 (1979).
- 353. S. Takano, N. Kubodera, and K. Ogasawara, J. Org. Chem., **42**, 786 (1977).
- 354. K. Kon, K. Ito, and S. Isoe, Tetrahedron Lett., 1984, 3739.
- 355. P. Callant, P. Storme, E. Van Der Eycken, and M. Vandewalle, Tetrahedron Lett., **1983**, 5797.
- 356. G. Quinkert, W.-D. Weber, U. Schwartz, H. Stark, H. Baier, and G. Durner, Justus Liebigs Ann. Chem., **1981**, 2335.
- 357. R. G. Salomon, N. D. Sachinvala, S. R. Raychaudhuri, and D. B. Miller, J. Am. Chem. Soc., **106**, 2211 (1984).
- 358. T.-L. Ho and S.-H. Liu, Synth. Commun., 12, 501 (1982).
- 359. S. Torii, H. Tanaka, and T. Mandai, J. Org. Chem., 40, 2221 (1975).
- 360. J. Ficini and A. Krief, Tetrahedron Lett., 1970, 1397.
- 361. R. R. Sauers and J. A. Beisler, J. Org. Chem., 29, 210 (1964).
- 362. R. R. Sauers and G. P. Ahearn, J. Am. Chem. Soc., 83, 2759 (1961).

- 363. H. Suginome and S. Yamada, Bull. Chem. Soc. Jpn., 58, 3055 (1985).
- 364. G. Buchi and I. M. Goldman, J. Am. Chem. Soc., 79, 4741 (1957).
- 365. T. Fujisawa, T. Kobori, A. Fukushima, and K. Sakai, Jpn. Patent, 79 32471 (1979) [C.A., 91, 107913f (1979)].
- 366. R. R. Sauers, J. Am. Chem. Soc., 81, 925 (1959).
- 367. G. Komppa, Ber., 47, 933 (1914).
- 368. H. Shibuya, H. Fujioka, A. Kajiwara, Y. Yamamoto, and I. Kitagawa, Chem. Pharm. Bull., **30**, 1271 (1982).
- Y. B. Lee, Ph.D. Dissertation, Temple University, Philadelphia, PA, 1987 [C.A., 109, 6335d (1988)].
- 370. M. F. Murray, B. A. Johnson, R. L. Pederson, and A. C. Ott, J. Am. Chem. Soc., 78, 981 (1956).
- 371. J. Meinwald and E. Frauenglass, J. Am. Chem. Soc., 82, 5235 (1960).
- 371a. G. Helmchen, A. Goeke, G. Lauer, M. Urmann, and J. Fries, Angew. Chem. Int. Ed. Engl., **29**, 1024 (1990).
- 371b. T.-F. Wang and C.-F. Yang, J. Chem. Soc., Chem. Commun., **1989**, 1876.
- 371c. P. Hamley, A. B. Holmes, D. R. Marshall, and J. W. M. MacKinnon, J. Chem. Soc., Perkin Trans. 1, **1991**, 1793.
- 372. G. Gowda and T. B. H. McMurray, J. Chem. Soc., Perkin Trans. 1, **1980**, 1516.
- 373. M. Shibasaki, A. Nishida, and S. Ikegami, Tetrahedron Lett., **1980**, 3061.
- 374. S. A. Monti and S.-S. Yuan, J. Org. Chem., 36, 3350 (1971).
- 375. M. M. Campbell, A. D. Kaye, M. Sainsbury, and R. Yavarzadeh, Tetrahedron, **40**, 2461 (1984).
- 376. R. R. Sauers, Tetrahedron Lett., 1962, 1015.
- 377. H. Miura, K.-I. Hirao, and O. Yonemitsu, Tetrahedron, 34, 1805 (1978).
- 378. G. Mehta, P. N. Pandey, and T.-L. Ho, J. Org. Chem., 41, 953 (1976).
- 379. K. Sato, Y. Yamashita, and T. Mukai, Tetrahedron Lett., 1981, 5303.
- 380. K.-I. Hirao, H. Miura, H. Hoshino, and O. Yonemitsu, Tetrahedron Lett., **1976**, 3895.
- 381. P. E. Eaton, Y. S. Or, S. J. Branca, and B. K. R. Shankar, Tetrahedron, 42, 1621 (1986).
- 382. A. Warm and P. Vogel, J. Org. Chem., 51, 5348 (1986).

- 383. A. Warm and P. Vogel, Tetrahedron Lett., 1986, 5615.
- 384. J. Moursounidis and D. Wege, Aust. J. Chem., 36, 2473 (1983).
- 385. J.-L. Reymond and P. Vogel, Tetrahedron Lett., **1988**, 3695.
- 386. J.-L. Reymond and P. Vogel, Tetrahedron Lett., 1989, 705.
- 387. R. R. Schmidt, C. Beitzke, and A. K. Forrest, J. Chem. Soc., Chem. Commun., **1982**, 909.
- 388. D. Fattori, E. de Guchteneere, and P. Vogel, Tetrahedron Lett., **1989**, 7415.
- 388a. J. Wagner and P. Vogel, Tetrahedron, **47**, 9641 (1991).
- 388b. S. Jeganathan and P. Vogel, Tetrahedron Lett., **1990**, 1717.
- 388c. S. Jeganathan and P. Vogel, J. Chem. Soc., Chem. Commun., **1989**, 993.
- 388d. S. Jeganathan and P. Vogel, J. Org. Chem., 56, 1133 (1991).
- 388e. J.-L. Reymond, A. A. Pinkerton, and P. Vogel, J. Org. Chem., **56**, 2128 (1991).
- 389. A. E. Greene, C. L. Drian, and P. Crabbe, J. Am. Chem. Soc., **102**, 7583 (1980).
- 390. N. M. Weinshenker and R. Stephenson, J. Org. Chem. 37, 3741 (1972).
- 391. E. J. Corey, T. K. Schaaf, W. Huber, V. Koelliker, and N. M. Weinshenker, J. Am. Chem. Soc., **92**, 397 (1970).
- 392. E. J. Corey, N. M. Weinshenker, T. K. Schaaf, and W. Huber, *ibid.*, **91**, 5675 (1969).
- 393. E. J. Corey, C. S. Shiner, R. P. Volante, and C. R. Cyr, Tetrahedron Lett., **1975**, 1161.
- 394. E. J. Corey and G. Moinet, J. Am. Chem. Soc., 95, 6831 (1973).
- 395. E. J. Corey, S. M. Albonico, U. Koelliker, T. K. Schaaf, and R. V. Varma, J. Am. Chem. Soc., **93**, 1491 (1971).
- 396. P. A. Grieco, C. S. Pogonowski, S. D. Burke, M. Nishizawa, M. Miyashita, Y. Masaki, C.-L. J. Wang, and G. Majetich, *ibid.*, **99**, 4111 (1977).
- 397. P. A. Grieco and T. R. Vedananda, J. Org. Chem., 48, 3497 (1983).
- 398. P. A. Grieco, W. Owens, C.-L. Wang, E. Williams, W. J. Schillingeer, K. Hirotsu, and J. Clardy, J. Med. Chem., **23**, 1072 (1980).
- 399. P. A. Grieco, W. J. Schillinger, and Y. Yokoyama, *ibid.*, **23**, 1077 (1980).
- 400. P. A. Grieco, T. Takigawa, and T. R. Vedananda, J. Org. Chem., **50**, 3111 (1985).
- 401. P. A. Grieco, C. S. Pogonowski, and M. Miyashita, J. Chem. Soc., Chem. Commun., **1975**, 592.
- 402. P. A. Grieco, C.-L. Wang, and F. J. Okuniewicz, J. Chem. Soc., Chem. Commun., **1976**, 939.
- 403. P. A. Grieco, C. S. Pogonowski, M. Nishizawa, and C.-L. Wang, Tetrahedron Lett., **1975**, 2541.
- 404. P. A. Grieco and T. Takigawa, J. Med. Chem., 24, 839 (1981).
- 405. P. A. Grieco and Y. Ohfune, J. Org. Chem., 45, 2251 (1980).
- 406. P. A. Grieco, Y. Yokoyama, G. P. Withers, F. J. Okuniewicz, and C.-L. J. Wang, *ibid.*, **43**, 4178 (1978).
- 407. K. Sakai, T. Kobori, and T. Fujisawa, Tetrahedron Lett., 1981, 115.
- 408. H. C. Arndt and C. Rajani, Tetrahedron Lett., 1982, 2365.
- 409. K. Saki, M. Yamashita, and Y. Shibata, Chem. Lett., 1986, 353.
- 410. E. D. Brown, R. Clarkson, T. J. Leeney, and G. E. Robinson, J. Chem. Soc., Perkin Trans. 1, **1978**, 1507.
- 411. C.-L. J. Wang, P. A. Grieco, and F. J. Okuniewicz, J. Chem. Soc., Chem. Commun., **1976**, 468.
- 412. A. Barco, S. Benetti, G. P. Pollini, P. G. Baraldi, and C. Gandolfi, J. Org. Chem., **45**, 4776 (1980).
- 413. P. A. Grieco, T. Takigawa, and W. J. Schillinger, J. Org. Chem., **45**, 2247 (1980).
- 414. P. A. Grieco, T. Takigawa, and D. R. Moore, J. Am. Chem. Soc., **101**, 4380 (1979).
- 415. P. A. Grieco, G. F. Majetich, and Y. Ohfune, J. Am. Chem. Soc., **104**, 4226 (1982).
- 416. P. A. Grieco, Y. Ohfune, Y. Yokoyama, and W. Owens, J. Am. Chem. Soc., **101**, 4749 (1979).
- 417. G. R. Martinez, P. A. Grieco, E. Williams, K. Williams, and C. V. Srinivasan, J. Am. Chem. Soc., **104**, 1436 (1982).
- 418. P. A. Grieco, D. L. Flynn, and R. E. Zelle, J. Am. Chem. Soc., **106**, 6414 (1984).
- 419. W. Herz, R. N. Mirrington, H. Young, and Y. Y. Lin, J. Org. Chem., **33**, 4210 (1968).
- 420. L. Chiche, H. Christol, J. Coste, F. Pietrasanta, and F. Plenat, Can. J. Chem., **59**, 164 (1981).
- 421. T. Rajamannar and K. K. Balasubramanian, Tetrahedron Lett., **1988**, 5789.
- 422. J. A. Marshall and R. H. Ellison, J. Org. Chem. 40, 2070 (1975).
- 423. (a) N. C. Madge and A. B. Holmes, J. Chem. Soc., Chem. Commun., **1980**, 956; (b) A. B. Holmes and N. C. Madge, Tetrahedron, **45**, 789 (1989).
- 424. G. R. Krow, C. A. Johnson, J. P. Guare, D. Kubrak, K. J. Henz, D. A.

Shaw, S. W. Szczepanski, and J. T. Carey, J. Org. Chem., **47**, 5239 (1982).

- 425. G. Krow and C. Johnson, Synthesis, 1979, 50.
- 426. A. J. Baxter and A. B. Holmes, J. Chem. Soc., Perkin Trans. 1, **1977**, 2343.
- 427. A. B. Holmes, J. Thompson, A. J. G. Baxter, and J. Dixon, J. Chem. Soc., Chem. Commun., **1985**, 37.
- 428. Y. Matsubara and M. Morita, Nippon Kagaku Zasshi, **77**, 1101 (1955) [C.A., **51**, 17831h (1957)].
- 429. Y. Matsubara and M. Morita, Nippon Kagaku Zasshi, **78**, 719 (1957) [C.A., **53**, 21716e (1959)].
- 430. F. Kido, R. Sakuma, H. Uda, and A. Yoshikoshi, Tetrahedron Lett., **1969**, 3169.
- 431. P. E. Eaton, R. H. Mueller, G. R. Carlson, D. A. Cullison, G. F. Cooper, T.-H. Chou, and E.-P. Krebs, J. Am. Chem. Soc., **99**, 2751 (1977).
- 432. Y. Kishi, M. Aratani, T. Fukuyama, F. Nakatsubo, T. Goto, S. Inoue, H. Tanino, S. Suguiura, and H. Kakoi, J. Am. Chem. Soc., **94**, 9217 (1972).
- 433. G. Ruecker, W. Gajewski, and J. Friemann, Arch. Pharm. (Weinheim, Ger.), **317**, 561 (1984) [C.A., **101**, 152113f (1984)].
- 434. I. F. Cook and J. R. Knox, Tetrahedron, **32**, 363 (1976).
- 435. L. H. Briggs, R. C. Cambie, and P. S. Rutledge, J. Chem. Soc., **1963**, 5374.
- 436. R. C. Cambie and R. C. Hayward, Aust. J. Chem., 25, 1135 (1972).
- 437. A. Nickon, H. R. Kwasnik, C. T. Mathew, T. D. Swartz, R. O. Williams, and J. B. DiGiorgio, J. Org. Chem., **43**, 3904 (1978).
- 438. D. N. Butler and T. J. Munshaw, Can. J. Chem., 59, 3365 (1981).
- 439. C. R. Surapaneni and R. Gilardi, J. Org. Chem., 51, 2382 (1986).
- 440. B. Pandey and P. V. Dalvi, J. Org. Chem., 54, 2968 (1989).
- 441. A. Belanger, D. J. F. Nerney, H.-J. Borschberg, R. Brousseau, A. Doutheau, R. Durand, H. Katayama, R. Lapalme, D. M. Leturc, C.-C. Liao, F. N. MacLachlan, J.-P. Maffrand, F. Marazza, R. Martino, C. Moreau, L. Saint-Laurent, R. Saintonge, P. Soucy, L. Ruest, and P. Deslongchamps, Can. J. Chem., **57**, 3348 (1979).
- 442. J. Adams and R. Frenette, Tetrahedron Lett., 1987, 4773.
- 443. A. V. R. Rao, J. S. Yadav, and V. Vidyasagar, J. Chem. Soc., Chem. Commun., **1985**, 55.
- 444. T. Momose, O. Muraoka, S. Atarashi, and T. Horita, Chem. Pharm. Bull., **27**, 222 (1979).
- 445. A. J. Playtis and J. D. Fissekis, J. Org. Chem., 40, 2488 (1975).

- 446. G. Just and G. P. Donnini, Can. J. Chem., 55, 2998 (1977).
- 447. M. J. Arco, M. H. Trammell, and J. D. White, J. Org. Chem., **41**, 2075 (1976).
- 448. R. Noyori, T. Sato, and Y. Hayakawa, J. Am. Chem. Soc., **100**, 2561 (1978).
- 449. T. Sato, M. Watanabe, and R. Noyori, Tetrahedron Lett., 1979, 2897.
- 450. T. Sato, M. Watanabe, and R. Noyori, Heterocycles, 14, 761 (1980).
- 451. T. Sato, M. Watanabe, and R. Noyori, Chem. Lett., 1978, 1297.
- 452. T. Sato, M. Watanabe, H. Kobayashi, and R. Noyori, Bull. Chem. Soc. Jpn., **56**, 2680 (1983).
- 453. T. Sato, M. Watanabe, and R. Noyori, Tetrahedron Lett., **1978**, 4403.
- 454. T. Sato, M. Watanabe, and R. Noyori, Chem. Lett., **1980**, 679.
- 455. T. Sato, H. Kobayashi, and R. Noyori, Heterocycles, 15, 321 (1981).
- 456. T. Sato, H. Kobayashi, and R. Noyori, Tetrahedron Lett., **1980**, 1971.
- 457. T. Sato, K. Marunouchi, and R. Noyori, Tetrahedron Lett., 1979, 3669.
- 458. T. Sato, R. Ito, Y. Hayakawa, and R. Noyori, Tetrahedron Lett., **1978**, 1829.
- 459. T. Sato and R. Noyori, Bull. Chem. Soc. Jpn., 53, 1195 (1980).
- 460. T. Sato and R. Noyori, Bull. Chem. Soc. Jpn., 56, 2700 (1983).
- 461. T. Sato and R. Noyori, Heterocycles, **13**, 141 (1979).
- 462. T. Sato and R. Noyori, Tetrahedron Lett., **1980**, 2535.
- 463. T. Sato and R. Noyori, Nucleic Acids Research, *Special Publication No. 5*, S257 (1978) [C.A., **90**, 121932x (1979)].
- 464. H. Gerlach, Helv. Chim. Acta, 61, 2773 (1978).
- 465. A. G. Schultz and J. D. Dittami, J. Org. Chem., 49, 2615 (1984).
- 466. T. Momose, S. Atarashi, and O. Muraoka, Tetrahedron Lett., **1974**, 3697.
- 467. F. N. Stepanov, T. N. Utochka, A. G. Yurchenko, and S. D. Isaev., Zh. Org. Khim., **10**, 59 (1974) [C.A., **80**, 108298u (1974)].
- 468. F. N. Stepanov, T. N. Utochka, A. G. Yurchenko, and S. D. Isaev., Zh. Org. Khim., **8**, 1183 (1972) [C.A., **77**, 88263m (1972)].
- 469. T. Momose and S. Atarashi, Chem. Pharm. Bull., 27, 824 (1979).
- 470. T. Momose, S. Atarashi, and C. H. Eugster, Heterocycles, 12, 41

(1979).

- 471. A. C. Cope and D. M. Dale, J. Am. Chem. Soc., 85, 3743 (1963).
- 472. R. A. Appleton, K. H. Baggaley, S. C. Egan, J. M. Davies, S. H. Graham, and D. O. Lewis, J. Chem. Soc. (C), **1968**, 2032.
- 473. W. Holick, E. F. Jenny, and K. Heusler, Tetrahedron Lett., **1973**, 3421.
- 474. H. M. Hellman, R. A. Jerussi, and J. Lancaster, J. Org. Chem., **32**, 2148 (1967).
- 475. G. Buchbauer, J. Gabmeier, E. Haslinger, W. Robien, and H. Steindl, Helv. Chim. Acta, **68**, 231 (1985).
- 476. H. Duddeck and M. Kaiser, Z. Naturforsch., Teil B, 37, 1672 (1982).
- 477. T. Uyehara, J.-I. Yamada, T. Furuta, T. Kato, and Y. Yamamoto, Tetrahedron **43**, 5605 (1987).
- 478. J. J. Sosnowski, E. B. Danaher, and R. K. Murray, Jr., J. Org. Chem., **50**, 2759 (1985).
- 479. H.-J. Liu and W. H. Chan, Can. J. Chem., 60, 1081 (1982).
- 480. G. B. Payne and P. H. Williams, J. Org. Chem., 24, 284 (1959).
- 481. I. I. Cubero and M. T. P. Lopez-Espinosa, Carbohydr. Res., **154**, 71 (1986).
- 482. I. I. Cubero and M. T. P. Lopez-Espinosa, Carbohydr. Res., **148**, 209 (1986).
- 483. S. Isoe, S. B. Hyeon, H. Ichikawa, S. Katsumara, and T. Sakan, Tetrahedron Lett., **1968**, 5561.
- 484. Y. Fujise, K. Fujiwara, and Y. Ito, Chem. Lett., 1988, 1475.
- 485. T. Yokoyama and N. Izui, Bull. Chem. Soc. Jpn., 38, 1498 (1965).
- 486. D. N. Dhar and R. C. Munjal, Synthesis, **1973**, 542.
- 487. H. Disselnkotter, F. Lieb, and D. Wendisch, Justus Liebigs Ann. Chem., **1982**, 1924.
- 488. M. Montury and J. Gore, Tetrahedron, 33, 2819 (1977).
- 489. J. N. Labows, Jr., Tetrahedron Lett., 1970, 403.
- 490. R. F. Heldeweg, H. Hogeveen, and E. P. Schudde, J. Org. Chem., **43**, 1912 (1978).
- 491. H. M. Walton, J. Org. Chem., 22, 1161 (1957).
- 492. T. Shono, Y. Matsumura, K. Hibino, and S. Miyawaki, Tetrahedron Lett., **1974**, 1295.
- 493. G. A. Krafft and J. A. Katzenellenbogen, J. Am. Chem. Soc., **103**, 5459 (1981).
- 494. H. O. House and R. L. Wasson, J. Org. Chem., 22, 1157 (1957).
- 495. G. Chappuis and C. Tamm, Helv. Chim. Acta, 65, 521 (1982).
- 496. S. W. Pelletier, C. W. J. Chang, and K. N. Iyer, J. Org. Chem., 34, 3477

(1969).

- 497. C. W. J. Chang and S. W. Pelletier, Tetrahedron Lett., **1966**, 5483.
- 498. M. S. Ahmad and A. R. Siddiqi, Indian J. Chem., Sect. B, **16**, 963 (1978).
- 499. S. D. Levine, Tetrahedron Lett., 1965, 2233.
- 500. M. S. Ahmad and G. Moinuddin, Indian J. Chem., Sect. B, **20**, 811 (1981).
- 501. M. S. Ahmad and I. A. Khan, Aust. J. Chem., **31**, 171 (1978).
- 502. A. K. Devi, G. K. Trivedi, and S. C. Bhattacharyya, Indian J. Chem., Sect. B, **16**, 8 (1978).
- 503. M. S. Ahmad, M. Mushfiq, and N. Z. Khan, Indian J. Chem., Sect. B, **14**, 936 (1976).
- 504. M. S. Ahmad, I. A. Ansari, K. Saleem, and G. Moinuddin, Indian J. Chem., Sect. B, **23**, 1110 (1984).
- 505. E. Caspi and Y. Shimizu, J. Org. Chem., 30, 223 (1965).
- 506. A. M. Nicaise and R. Bourdon, Bull. Soc. Chim. Fr., **1970**, 1552.
- 507. G. R. Pettit and T. R. Kasturi, J. Org. Chem., 26, 4557 (1961).
- 508. M. Gorodetsky, N. Danieli, and Y. Mazur, J. Org. Chem., **32**, 760 (1967).
- 509. J. T. Pinhey and K. Schaffner, Aust. J. Chem., 21, 1873 (1968).
- 510. J. T. Pinhey and K. Schaffner, Tetrahedron Lett., **1965**, 601.
- 511. M. S. Ahmad, A. H. Siddiqi, Shafiullah, Indian J. Chem., 8, 786 (1970).
- 512. Shafiullah and M. A. Ghaffari, J. Indian Chem. Soc., 57, 663 (1980).
- 513. Shafiullah and E. A. Khan, Acta Chim. Acad. Sci. Hung., **103**, 329 (1980) [C.A., **94**, 30995m (1980)].
- 514. M. Kocot, A. Kurek, and J. Dabrowski, Tetrahedron, 25, 4257 (1969).
- 515. E. Caspi and S. N. Balasubrahmanyam, Experientia, **19**, 396 (1963).
- 516. M. S. Ahmad, Shafiullah, and M. Mushfiq, Aust. J. Chem., **27**, 2693 (1974).
- 517. M. Rubio, R. Cetina, M. L. Marin, and L. J. Reyes, Rev. Latinoamer. Quim., **13**, 93 (1982).
- 518. E. S. Rothman and M. E. Wall, J. Am. Chem. Soc., 77, 2228 (1955).
- 519. L. Lorenc, L. Bondarenko, and M. L. Mihailovic, Tetrahedron Lett., **1985**, 389.
- 520. D. L. Coffen and D. G. Korzan, J. Org. Chem., 36, 390 (1971).
- 521. A. G. Davies, Organic Peroxides, Butterworths, London, 1961, p. 164.

- 522. T. Kusumi, T. Kishi, H. Kakisawa, and T. Kinoshita, J. Chem. Soc., Perkin Trans. 1, **1976**, 1716.
- 523. F. R. Hewgill and S. R. Lee, J. Chem. Soc. (C), 1969, 2080.
- 524. G. Speier and Z. Tyeklar, Chem. Ber., 112, 389 (1979).
- 525. G. Speier and Z. Tyeklar, J. Chem. Soc., Perkin Trans. 2, 1981, 1176.
- 526. T. R. Demmin and M. M. Rogic, J. Org. Chem., 45, 1153 (1980).
- 527. P. Bassard and P. Karrer, Helv. Chem. Acta, 43, 262 (1960).
- 528. C. A. Bunton in *Peroxide Reaction Mechanisms*, J. O. Edwards, Ed., Wiley-Interscience, New York, 1962, p. 16.
- 529. H. M. Hellman and R. A. Jerussi, Tetrahedron, 20, 741 (1964).
- 530. A. A. Patchett and B. Witkop, J. Org. Chem., 22, 1477 (1957).
- 531. M. Pailer and A. Schleppnik, Monatsh. Chem., 88, 367 (1957).
- 532. K. Maruyama, Bull. Chem. Soc. Jpn., 34, 102 (1960).
- 533. W. L. Meyer, A. P. Lobo, and R. N. McCarty, J. Org. Chem., **32**, 1754 (1967).
- 534. C. Sandris and G. Ourisson, Bull. Soc. Chim. Fr., 1958, 338.
- 535. K. Alder and R. Reubke, Chem. Ber., **91**, 1525 (1958).
- 536. O. Hayaishi, A. A. Patchett, and B. Witkop, Justus Leibigs Ann. Chem., **608**, 158 (1957).
- 537. A. R. Battersby, R. Binks, and B. J. T. Harper, J. Chem. Soc., **1962**, 3534.
- 538. Y. Sawaki and C. S. Foote, J. Am. Chem. Soc., 101, 6292 (1979).
- 539. J. Rebek, Jr., T. Costello, and R. Wattley, J. Am. Chem. Soc., **107**, 7487 (1985).
- 540. A. A. Dolgalev and S. A. Samodumov, J. Org. Chem. USSR (Engl. Transl.), **2**, 1323 (1966).
- 541. G. Reissenweber and D. Mangold, Angew. Chem., Int. Ed. Engl., **19**, 222 (1980).
- 542. Y. Ito, T. Shibata, M. Arita, H. Sawai, and M. Ohno, J. Am. Chem. Soc., **103**, 6739 (1981).
- 543. M. Ohno, Y. Ito, M. Arita, T. Shibata, K. Adachi, and H. Sawai, Tetrahedron, **40**, 145 (1984).
- 544. M. Sprecher and E. Nativ, Tetrahedron Lett., **1968**, 4405.
- 545. M. F. Ansel, A. F. Gosden, V. J. Leslie, and R. A. Murray, J. Chem. Soc. (C), **1971**, 1401.
- 546. A. Chatterjee, G. K. Biswas, and A. B. Kundu, J. Indian Chem. Soc., **46**, 429 (1969).
- 547. H. D. Dakin, Org. Synth., Coll. Vol. 1, 149 (1941).

- 548. G. A. Nikoforov and V. V. Ershov, Izv. Akad. Nauk SSR, Ser. Khim., **1964**, 176 [C.A., **60**, 9188g (1964)].
- 549. A. R. Surrey, Org. Synth., Coll. Vol. 3, 759 (1959).
- 550. L. Horner and K.-H. Weber, Chem. Ber., 96, 1569 (1963).
- 551. A. Chatterjee, D. Ganguly, and R. Sen, Tetrahedron, 32, 2407 (1976).
- 552. A. V. R. Rao, N. Sreenivasan, D. R. Reddy, and V. H. Deshpande, Tetrahedron Lett., **1987**, 455.
- 553. T. R. Seshadri and G. B. Venkatasubramanian, J. Chem. Soc., **1959**, 1660.
- 554. T. R. Seshadri and G. B. V. Subramanian, J. Indian Chem. Soc., **40**, 7 (1963).
- 555. H. Yasuda, J. Sci. Res. Inst., **52**, 83 (1958) [C.A., **53**, 16051h (1959)].
- 556. L. S. Kiong and J. H. P. Tyman, J. Chem. Soc., Perkin Trans. 1, **1981**, 1942.
- 557. R. M. Naik and V. M. Thakor, J. Org. Chem., 22, 1626 (1957).
- 558. R. M. Naik and V. M. Thakor, J. Org. Chem., 22, 1630 (1957).
- 559. A. C. Jain, T. R. Seshadri, and K. R. Sreenivasan, J. Chem. Soc., **1955**, 3908.
- 560. R. N. Goel, A. C. Jain, and T. R. Seshadri, J. Chem. Soc., 1956, 1369.
- 561. V. K. Ahluwalia, S. K. Mukerjee, and T. R. Seshadri, J. Chem. Soc., **1954**, 3988.
- 562. V. K. Ahluwalia, C. Prakash, and M. C. Gupta, Indian J. Chem., Sect. B, 16, 286 (1978).
- 563. D. K. Bhardwaj, M. S. Bisht, S. C. Jain, and G. C. Sharma, Indian J. Chem., Sect. B, **16**, 338 (1978).
- 564. D. K. Bhardwaj, S. Neelakantan, and T. R. Seshadri, Indian J. Chem., **3**, 559 (1965).
- 565. D. K. Bhardwaj, S. C. Jain, G. C. Sharma, and R. Singh, Indian J. Chem., Sect. B, **16**, 339 (1978).
- 566. P. D. Re, L. Verlicchi and I. Setnikar, J. Org. Chem., 25, 1097 (1960).
- 567. R. B. Gammill and S. A. Nash, J. Org. Chem., 51, 3116 (1986).
- 568. A. C. Jain and T. R. Seshadri, J. Sci. Ind. Res., Sect. B, **15**, 61 (1956) [C.A., **50**, 14684d (1956)].
- 569. A. Schonberg, N. Badran, and N. A. Starkowsky, J. Am. Chem. Soc., **77**, 5390 (1955).
- 570. S. R. Baker and L. Crombie, J. Chem. Soc., Perkin Trans. 1, 1981, 172.

- 571. R. L. Hannan, R. R. Barber, and H. Rapoport, J. Org. Chem., **44**, 2153 (1979).
- 572. H. H. Nimz and H. Schwind, Cellul. Chem. Technol., **13**, 35 (1979) [C.A., **91**, 176871c (1979)].
- 573. J. Andrieux and G. Emptoz, C. R. Hebd. Seances Acad. Sci., Ser. C, **265**, 681 (1967).
- 574. R. J. Kennedy and A. M. Stock, J. Org. Chem., 25, 1901 (1960).
- 575. F. Camps, J. Coll, A. Messeguer, and M. A. Pericas, Tetrahedron Lett., **1981**, 3895.
- 576. L. Syper, K. Kloc, and J. Mlochowski, J. Prakt. Chem., **321**, 808 (1985).
- 577. L. Syper, J. Mlochowski, and K. Kloc, Tetrahedron, **39**, 781 (1983).
- 578. L. Syper, Synthesis, 1989, 167.
- 579. M. Matsumoto, H. Kobayashi, and Y. Hotta, J. Org. Chem., **49**, 4740 (1984).
- 580. I. Kubo, M. Kim, I. Ganjian, T. Kamikawa, and Y. Yamagiwa, Tetrahedron, **42**, 2653 (1987).
- 581. R. B. Gammill and B. R. Hyde, J. Org. Chem., 48, 3863 (1983).
- 582. R. B. Gammill, U.S. Pat. 4,412,071 (1983) [C.A., 100, 51367r (1983)].
- 583. M. V. Sargent, J. Chem. Soc., Perkin Trans. 1, 1982, 403.
- 584. I. M. Godfrey, M. V. Sargent, and J. A. Elix, J. Chem. Soc., Perkin Trans. 1, **1974**, 1353.
- 585. I. H. Sanchez, M. I. Larraza, F. Basurto, R. Yanez, S. Avila, R. Tovar, and P. Joseph-Nethan, Tetrahedron, **41**, 2355 (1985).
- 586. I. H. Sanchez, S. Mendoza, M. Calderon, M. I. Larraza, and H. J. Flores, J. Org. Chem., **50**, 5077 (1985).
- 587. E. Brown, M. Loriot, and J.-P. Robin, Tetrahedron Lett., **1982**, 949.
- 588. D. L. Ladd, D. Gaitanopoulos, and J. Weinstock, Synth. Commun., **15**, 61 (1985).
- 589. J. Royer and M. Beugelmans-Verrier, C.R. Hebd. Seances Acad. Sci., Ser. C, **272**, 1818 (1971).
- 590. F. Nakatsubo, A. J. Cocuzza, D. E. Keeley, and Y. Kishi, J. Am. Chem. Soc., **99**, 4835 (1977).
- 591. R. Royer, P. Demerseman, A.-M. Laval-Jeantet, J.-F. Rossignol, and A. Cheutin, Bull. Soc. Chim. Fr., **1968**, 1026.
- 592. J. A. Elix, M. V. Sargent, and P. Vogel, J. Chem. Soc., Chem. Commun., **1974**, 1023.
- 593. P. Djura and M. V. Sargent, Aust. J. Chem., 29, 1069 (1976).
- 594. P. Djura and M. V. Sargent, Aust. J. Chem., 29, 899 (1976).

- 595. P. Djura, M. V. Sargent, and P. D. Clark, Aust. J. Chem., **30**, 1545 (1977).
- 596. P. Djura, M. V. Sargent, and P. Vogel, J. Chem. Soc., Perkin Trans. 1, **1976**, 147.
- 597. H. O. Bernhard, J. N. Reed, and V. Snieckus, J. Org. Chem., **42**, 1093 (1977).
- 598. C. A. Broka, S. Chan, and B. Peterson, J. Org. Chem., 53, 1586 (1988).
- 599. S. P. Sethi, R. Sterzycki, W. W. Sy, R. Marini-Bettolo, T. Y. R. Tsai, and K. Wiesner, Heterocycles, **14**, 23 (1980).
- 600. L. Syper and J. Mlochowski, Tetrahedron, **43**, 207 (1987).
- 601. C. Devakumar and S. K. Mukerjee, Indian J. Chem., Sect. B, **25**, 1150 (1986).
- 602. H. Ishii, E. Ueda, K. Nakajima, T. Ishida, T. Ishikawa, K.-I. Harada, I. Ninomiya, T. Naito, and T. Kiguchi, Chem. Pharm. Bull., 26, 864 (1978).
- 603. H. Ishii, K.-I. Harada, T. Ishida, E. Ueda, and K. Nakajima, Tetrahedron Lett., **1975**, 319.
- 604. F. Dallecker, G. Reichrath, and G. Schnackers, Z. Naturforsch., Teil B, **34**, 624 (1979).
- 605. D. G. Orphanos and A. Taurins, Can. J. Chem., 44, 1875 (1966).
- 606. D. G. Crosby, J. Org. Chem., 26, 1215 (1961).
- 607. R. Hue, A. Jubier, J. Andrieux, and A. Resplandy, Bull. Chem. Soc. Fr., **1970**, 3617.
- 608. N. Minami and S. Kijima, Chem. Pharm. Bull., 28, 1648 (1980).
- 609. N. Mollov, S. Philipov, and H. Dutschewska, Chem. Ber., **111**, 554 (1978).
- 610. W. L. Nelson and T. R. Burke, Jr., J. Med. Chem., 22, 1082 (1979).
- 611. A. Langendoen, G.-J. Koomen, and U. K. Pandit, Heterocycles, **26**, 91 (1987).
- 612. W. M. Best and D. Wege, Aust. J. Chem., **39**, 647 (1986).
- 613. R. W. Frank and R. B. Gupta, J. Org. Chem., 50, 4632 (1985).
- 614. K. Fujishiro and S. Mitamura, Bull. Chem. Soc. Jpn., 61, 4464 (1988).
- 615. K. A. Parker and T. Iqbal, J. Org. Chem., 45, 1149 (1980).
- 616. J.-A. H. Masman and K. G. Pensar, Synthesis, 1985, 786.
- 617. C. W. Jefford, D. Jaggi, and J. Boukouvalas, Tetrahedron Lett., **1989**, 1237.
- 618. C. E. Teague, Jr. and A. Roe, J. Am. Chem. Soc., **73**, 688 (1951).

- 619. J. Royer and M. Beugelmans-Verrier, C.R. Hebd. Seances Acad. Sci., Ser. C, **279**, 1049 (1974).
- 620. F. Nicotra, R. Ronchetti, G. Russo, L. Toma, P. Gariboldi, and B. M. Ranzi, J. Chem. Soc., Chem. Commun., **1984**, 383.
- 621. G. Buchbauer, V. M. Heneis, V. Krejci, C. Talsky, and H. Wunderer, Monatsh. Chem., **116**, 1345 (1985).
- 622. I. Valterova, J. Klinot, and A. Vystrcil, Collect. Czech. Chem. Commun.,
  45, 1964 (1980).
- 623. C. Schaer, Helv. Chim. Acta, 41, 619 (1958).
- 624. L. P. Vinogradova and S. I. Zav'yalov, Izv. Akad. Nauk SSR, Otdel Khim Nauk, **1960**, 1717 [C.A., **55**, 8319a (1961)].
- 625. S. Ghosh and S. Saha, Tetrahedron, 41, 349 (1985).
- 626. F. Kienzle, H. Mayer, R. E. Minder, and H. Thommen, Helv. Chim. Acta, 61, 2616 (1978).
- 627. Y. Bessiere-Chretien and J. P. Marion, Chimia, 24, 306 (1970).
- 628. L. Syper, Tetrahedron, **43**, 2853 (1987).
- 629. K. C. Reddy, B. V. Mallaiah, and G. Srimannarayana, Curr. Sci., **49**, 18 (1980).
- 630. G. Chiurdoglu and R. Fuks, Tetrahedron Lett., 1963, 1715.
- 631. R. Fuks and G. Chiurdoglu, Bull. Soc. Chim. Belg., 76, 244 (1967).
- 632. W. F. Bailey and M.-J. Sikh, J. Am. Chem. Soc., 104, 1769 (1982).
- 633. W. F. Bailey and J. J. Bischoff, J. Org. Chem., **50**, 3009 (1985).
- 634. Y. Gaoni, J. Chem. Soc. (C), 1968, 2934.
- 635. Y. Gaoni, J. Chem. Soc. (C), 1968, 2925.
- 636. H.-J. Knolker and E. Winterfeldt, Justus Liebigs Ann. Chem., 1986, 465.
- 637. S. A. Roman, U.S. Pat. 4,241,081 (1980) [C.A., 94, 156405n (1981)].
- 638. S. S. Bhosale, G. H. Kulkarni, and R. B. Mitra, Indian J. Chem., Sect. B, 24, 543 (1985).
- 639. D. L. Heywood and B. Phillips, J. Org. Chem., 25, 1699 (1960)
- 640. P. A. Grieco, T. Oguri, and Y. Yokoyama, Tetrahedron Lett., 1978, 419.
- 641. S. L. Schreiber and A. H. Hoveyda, J. Am. Chem. Soc., **106**, 7200 (1984).
- 642. L. M. Waykole, C.-C. Shen, and L. A. Paquette, J. Org. Chem., **53**, 4969 (1983).
- 643. J. R. Bull, E. R. H. Jones, and G. D. Meakins, J. Chem. Soc., **1965**, 2601.

- 644. J.-M. Adam and T. Winkler, Helv. Chim. Acta, 67, 2186 (1984).
- 645. R. J. Richman and A. Hassner, J. Org. Chem., 33, 2548 (1968).
- 646. A. Padwa, J. Am. Chem. Soc., 87, 4365 (1965).
- 647. H. Ishii and T. Ishikawa, J. Chem. Soc., Perkin Trans. 1, 1984, 1769.
- 648. H. Ishii and T. Ishikawa, Tetrahedron Lett., 1976, 1203.
- 649. R. Paredes, H. Bastos, R. Montoya, and A. L. Chavez, Tetrahedron, 44, 6821 (1988).
- 650. J. Cella, J. P. McGrath, and S. L. Regen, Tetrahedron Lett., **1975**, 4115.
- 651. E. J. Behrman, Org. React., 35, 421 (1988).
- 652. J.-P. Gesson, J.-C. Jacquesy, M.-P. Jouannetaud, and G. Morrellet, Tetrahedron Lett., **1983**, 3095.
- 653. S. B. Gingerich, W. H. Campbell, C. E. Bricca, P. W. Jennings, and C. F. Campana, J. Org. Chem., 46, 2589 (1981).
- 654. S. B. Gingerich and P. W. Jennings, J. Org. Chem., 48, 2606 (1983).
- 655. S. B. Gingerich and P. W. Jennings, J. Org. Chem., 49, 1284 (1984).
- 656. Y. Tsuda, T. Tanno, A. Ukai, and K. Isobe, Tetrahedron Lett., **1971**, 2009.
- 657. Y. Tobe, M. Ohtani, K. Kakiuchi, and Y. Odaira, Tetrahedron Lett., **1983**, 3639.
- 658. W. G. Dauben and L. N. Reitmen, J. Org. Chem., 40, 835 (1975).
- 659. M. Baumgarth and K. Irmscher, Tetrahedron, **31**, 3119 (1975).
- 660. P. Ashkenazi, M. Kapon, U. Piantini, W. Von Philipsborn, and D. Ginsberg, Helv. Chim. Acta, **68**, 614 (1985).
- 661. T.-L. Ho and Z. U. Din, Synth. Commun., 12, 257 (1982).
- 662. R. N. McDonald and G. E. Davis, J. Org. Chem., 34, 1916 (1969).
- 663. K. Kakiuchi, Y. Tobe, and Y. Odaira, J. Org. Chem., 45, 729 (1980).
- 664. G. Mehta, V. Singh, P. N. Pandey, B. Chaudhury, and H. Duddeck, Chem. Lett., **1978**, 1027.
- 665. P. R. Brook and B. V. Brophy, J. Chem. Soc. (D), **1969**, 1397.
- 666. P. Canonne, G. B. Foscolos, and D. Belanger, J. Org. Chem., **45**, 1828 (1980)
- 667. P. A. Tardella and G. D. Maio, Tetrahedron, 23, 2285 (1967).
- 668. J. D. Connolly and K. H. Overton, Proc. Chem. Soc. (London), **1959**, 188.
- 669. J. S. E. Holker, W. R. Jones, and P. J. Ramm, J. Chem. Soc. (C), 1969,

357.

- 670. J. S. E. Holker, W. R. Jones, and P. J. Ramm, J. Chem. Soc., Chem. Commun., **1965**, 435.
- 671. T. Hase, J. Chem. Soc., Chem. Commun., 1972, 755.
- 672. J. E. Baldwin and J. H. I. Cardellina, J. Chem. Soc., Chem. Commun., **1968**, 558.
- 673. K. L. Bhat and G. Trivedi, Synth. Commun., **12**, 585 (1982).
- 674. M. A. Oxman, M. G. Ettlinger, and A. R. Bader, J. Org. Chem., **30**, 2051 (1965).
- 675. J. Andrieux and G. Emptoz, C.R. Hebd. Seances Acad. Sci., 265, 1294 (1967).
- 676. V. K. Ahluwalia, J. S. Pathania, and T. R. Seshadri, Indian J. Chem., Sect. B, **4**, 271 (1966).
- 677. G. B. Payne, J. Org. Chem., 24, 1830 (1959).
- 678. R. Granger, J. Boussinesq, J. P. Girard, and J. C. Rossi, Bull. Soc. Chim. Fr., **1968**, 1445.
- 679. R. Granger, J. Boussinesq, J. P. Girard, and J. C. Rossi, Bull. Soc. Chim. Fr., **1969**, 2801.
- 680. R. Granger, J. Boussinesq, J. P. Girard, J. C. Rossi, and J. P. Vidal, Bull. Soc. Chim. Fr., **1969**, 2806.
- 681. J. S. Bindra and A. Grodski, J. Org. Chem., 43, 3240 (1978).
- 682. O. Abril, C. C. Ryerson, C. Walsh, and G. M. Whitesides, Bioorg. Chem., **17**, 41 (1989).
- 683. C. T. Walsh and Y.-C. J. Chen, Angew. Chem., Int. Ed. Engl., **27**, 333 (1988).
- 684. V. Alphand, A. Archelas, and R. Furstoss, J. Org. Chem., **55**, 347 (1990).
- 685. M. J. Taschner and D. J. Black, J. Am. Chem. Soc., 110, 6892 (1988).
- 686. P. Soucy, T.-L. Ho, and P. Deslongchamps, Can. J. Chem., **50**, 2047 (1972).
- 687. G. Mehta and S. C. Suri, Tetrahedron Lett., 1980, 3825.
- 688. G. Mehta and V. Singh, Tetrahedron Lett., 1978, 4591.
- 689. G. Mehta, V. Singh, and H. Duddeck, Tetrahedron Lett., **1978**, 1223.
- 690. G. Mehta, V. Singh, P. N. Pandey, B. Chaudhury, and H. Duddeck, Chem. Lett., **1980**, 59.
- 691. B. Danieli and G. Palmisano, Chem. Ind. (London), 1976, 565.
- 692. L. R. Subramanian and G. S. K. Rao, Tetrahedron, 23, 4167 (1967).

- 693. L. R. Subramanian and G. S. K. Rao, J. Ind. Inst. Sci., 52, 112 (1970) [C.A., 74, 75849v (1970)].
- 694. R. Jeanne-Curlier and F. Bourelle-Wargnier, Bull. Chem. Soc. Fr., **1976**, 297.
- 695. D. R. Morton, E. Lee-Ruff, R. M. Southam, and N. J. Turro, J. Am. Chem. Soc., **92**, 4349 (1970).
- 696. R. Lapalme, H.-J. Borschberg, P. Soucy, and P. Deslongchamps, Can. J. Chem., 57, 3272 (1979).
- 697. F. Barba, A. Guirado, I. Barba, and M. Lopez, Tetrahedron Lett., **1982**, 4631.
- 698. R. D. Clark and C. H. Heathcock, J. Org. Chem., 41, 1396 (1976).
- 699. R. D. Clark and C. H. Heathcock, Tetrahedron Lett., **1974**, 2027.
- 700. H. Suemune, K. Oda, S. Saeki, and K. Sakai, Chem. Pharm. Bull., 36, 172 (1988).
- 701. T. V. Lee, J. Toczek, and S. M. Roberts, J. Chem. Soc., Chem. Commun., **1985**, 371.
- 702. P. T. W. Cheng and S. McLean, Can. J. Chem., 67, 261 (1989).
- 703. M. Demuth and K. Schaffner, Angew. Chem., Int. Ed. Engl., **21**, 820 (1982).
- 704. I. J. Borowitz, G. J. Williams, L. Gross, and R. Rapp, J. Org. Chem., 33, 2013 (1968).
- 705. I. J. Borowitz and G. Gonis, Tetrahedron Lett., 1964, 1151.
- 706. I. J. Borowitz and G. J. Williams, Tetrahedron Lett., 1965, 3813.
- 707. I. J. Borowitz, V. Bandurco, M. Heyman, R. D. G. Rigby, and S.-N. Ueng, J. Org. Chem., 38, 1234 (1973).
- 708. I. J. Borowitz and R. Rapp, J. Chem. Soc., Chem. Commun., **1969**, 1202.
- 709. I. J. Borowitz, G. J. Williams, L. Gross, H. Beller, D. Kurland, N. Suciu,V. Bandurco, and R. D. G. Rigby, J. Org. Chem., **37**, 581 (1972).
- 710. H. Immer and J. F. Bagli, J. Org. Chem., **33**, 2457 (1968).
- 711. J. R. Mahajan and H. C. Araujo, Synthesis, **1976**, 111.
- 712. J. R. Mahajan, G. A. L. Ferreira, H. C. Araujo, and B. J. Nunes, Synthesis, **1976**, 112.
- 713. K. Manfredi, S. B. Gingerich, and P. W. Jenning, J. Org. Chem., **50**, 535 (1985).
- 714. L. Velluz, G. Amiard, J. Martel and J. Warnant, C.R. Hebd. Seances Acad. Sci., **244**, 1937 (1957).
- 715. L. Velluz, G. Amiard, J. Martel, and J. Warnant, Bull. Soc. Chim. Fr., **1957**, 1484.
- 716. J. Warnant, R. Joly, J. Mathieu, and L. Velluz, Bull. Soc. Chim. Fr.,

**1957**, 331.

- 717. F. E. Ziegler and A. Kneisley, Heterocycles, 25, 105 (1987).
- 718. F. E. Ziegler, A. Kneisley, J. Thottathil, and R. T. Wester, J. Am. Chem. Soc., **110**, 5434 (1988).
- 719. F. E. Ziegler, W. T. Cain, A. Kneisley, E. P. Stirchak, and R. T. Wester, J. Am. Chem. Soc., **110**, 5442 (1988).
- 720. E. Hedaya and S. Winstein, J. Am. Chem. Soc., 89, 1661 (1967).
- 721. H. Kigoshi, Y. Imamura, H. Niwa, and K. Yamada, J. Am. Chem. Soc., **111**, 2302 (1989).
- 722. D. L. Boger and R. S. Coleman, J. Org. Chem., 51, 5436 (1986).
- 723. B. Taljaard, A. Goosen, and C. W. McCleland, J. Chem. Soc., Perkin Trans. 1, **1989**, 931.
- 724. P. Yates and R. O. Loutfy, Acc. Chem. Res., 8, 209 (1975).
- 725. P. Yates, J. Photochem., 5, 91 (1976).
- 726. J. Meinwald and R. A. Chapman, J. Am. Chem. Soc., 90, 3218 (1968).
- 727. Y. Fukuda, J. Org. Chem., 44, 4557 (1979).
- 728. R. F. Newton, C. C. Howard, D. P. Reynolds, A. H. Wadsworth, N. M. Crossland, and S. M. Roberts, J. Chem. Soc., Chem. Commun., **1978**, 662.
- 729. A. B. Smith, III, A. M. Foster, and W. C. Agosta, J. Am. Chem. Soc., **94**, 5100 (1972).
- 730. W. S. Johnson and L. A. Bunes, J. Am. Chem. Soc., 98, 5597 (1976).
- 731. J. Strouse, J. Am. Chem. Soc., 99, 572 (1977).
- 732. K. Pandiarajan in *Synthetic Reagents*, J. S. Pizey, Ed., Ellis Horwood, Chichester, England, 1985, p. 60.
- 733. A. I. Meyers and S. Schwartzman, Tetrahedron Lett., 1976, 2417.
- 734. W. H. Rastetter, T. J. Richard, and M. D. Lewis, J. Org. Chem., **43**, 3163 (1978).
- 735. W. D. Emmons, J. Am. Chem. Soc., 76, 3468 (1954).
- 736. M. Anastasia, P. Allevi, P. Ciuffreda, A. Fiecchi, and A. Scala, J. Org. Chem., **50**, 321 (1985).
- 737. L. S. Silbert, E. Siegel, and D. Swern, J. Org. Chem., 27, 1336 (1962).
- 738. K. A. Konen and L. S. Silbert, J. Org. Chem., 36, 2162 (1971).
- 739. M. Vikas, Bull. Soc. Chim. Fr., 1959, 1401.
- 740. F. Toda, M. Yagi, and K. Kiyoshige, J. Chem. Soc., Chem. Commun., **1988**, 958.
- 741. F. Fringuelli, R. Germani, F. Pizzo, and G. Savelli, Gazz. Chim. Ital., **119**, 249 (1989).
- 742. S. S. C. Koch and A. R. Chamberlin, Synth. Commun., 19, 829 (1989).

- 743. N. N. Schwartz and J. H. Blumbergs, J. Org. Chem., 29, 1976 (1964).
- 744. I. Bidd, D. J. Kelly, P. M. Ottley, O. I. Paynter, D. J. Simmonds, and M. C. Whiting, J. Chem. Soc., Perkin Trans. 1, **1983**, 1369.
- 745. D. Swern, Org. React., 7, 378 (1953).
- 746. E. E. Royals and L. L. Harrell, Jr., J. Am. Chem. Soc., 55, 3405 (1955).
- 747. J. Meinwald and J.-L. Ripoll, J. Am. Chem. Soc., 89, 7075 (1967).
- 748. P. Brougham, M. S. Cooper, D. A. Cummerson, H. Heaney, and N. Thompson, Synthesis, **1987**, 1015.
- 749. T. H. Parliment, M. W. Parliment, and I. S. Fagerson, Chem. Ind. (London), **1966**, 1845.
- 750. N. C. Deno, W. E. Billups, K. E. Kramer, and R. R. Lastomirsky, J. Org. Chem., **35**, 3080 (1970).
- 751. A. Gringauz and E. Tosk, Org. Prep. Proced. Int., 50, 185 (1970).
- 752. J. H. Markgraf and S. J. Basta, Synth. Commun., **2**, 139 (1972).
- 753. A. B. Holmes and N. C. Madge, Tetrahedron, 45, 789 (1989).
- 754. P. S. Starcher and B. Philips, J. Am. Chem. Soc., 80, 4079 (1958).
- 755. J. Blum, Y. Pickholtz, and H. Hart, Synthesis, 1972, 195.
- 756. M. Matsumoto and H. Kobashi, Heterocycles, 24, 2443 (1986).
- 757. R. Dannley and G. Talies, J. Org. Chem., 30, 2417 (1965).
- 758. J. Rebek, Jr. and R. McCready, Tetrahedron Lett., 1979, 4337.
- 759. C. R. Harrison and P. Hodge, J. Chem. Soc., Perkin Trans. 1, **1976**, 605.
- 760. J. M. Bachhawat and N. K. Mathur, Tetrahedron Lett., 1971, 691.
- 761. N. Kawabe, K. Odada, and M. Ohno, J. Org. Chem., 37, 4210 (1972).
- 762. F. Mares, S. E. Jacobson, and R. T. Tang, U.S. Pat. 4,171,313 (1979) [C.A., **92**, 65362p (1980)].
- 763. S. E. Jacobson, R. Tang, and F. Mares, J. Chem. Soc., Chem. Commun., **1978**, 888.
- 763a. G. A. Olah, Q. Wand, N. J. Trivedi, and G. K. S. Prakash, Synthesis, **1991**, 739.
- 764. D. L. Boger and M. D. Mullican, J. Org. Chem., 49, 4033 (1984).
- 765. R. D. Chambers and M. Clark, Tetrahedron Lett., 1970, 2741.
- 766. R. D. Bushick, Tetrahedron Lett., **1971**, 579.
- 767. G. Cainelli, M. Panunzio, D. Giacomini, G. Martelli, and G. Spunta, J. Am. Chem. Soc., **110**, 6879 (1988).
- 768. A. H. Andrist, R. M. Agnello, and D. C. Wolfe, J. Org. Chem., **43**, 3422 (1978).
- 769. S. A. Monti and C. K. Ward, Tetrahedron Lett., 1971, 697.
- 770. R. Breslow and M. A. Winnik, J. Am. Chem. Soc., 91, 3083 (1969).

- 771. J. A. Cella, J. P. McGrath, J. A. Kelly, O. Elsoukkary, and L. Hilpert, J. Org. Chem., **42**, 2077 (1977).
- 772. M. B. Hocking, M. Ko, and T. A. Smyth, Can. J. Chem., **56**, 2646 (1978).
- 773. K. B. Wiberg and R. W. Ubersax, J. Org. Chem., 37, 3827 (1972).
- 774. D. H. Gibson, H. L. Wilson, and J. T. Joseph, Tetrahedron Lett., **1973**, 1289.
- 775. D. Seebach, A. K. Beck, J. Golinski, J. N. Hay, and T. Laube, Helv. Chim. Acta, **68**, 162 (1985).
- 776. L. Cottier and G. Descotes, C.R. Acad. Sci., Ser. C, 273, 64 (1971).
- 777. D. D. Jones and D. C. Johnson, J. Org. Chem., 32, 1402 (1967).
- 778. M. A. Winnik, Synth. Commun., 1973, 299.
- 779. Y. Yukawa, K. Token, and T. Ando, Radioisotopes, 27, 527 (1978).
- 780. W. Adcock, A. N. Abeywickrema, and G. B. Kok, J. Org. Chem., **49**, 1387 (1984).
- 781. R. Maurin and M. Bertrand, C.R. Acad. Sci., Ser. C, 271, 522 (1970).
- 782. J. Meinwald, J. J. Tufariello, and J. J. Hurst, J. Org. Chem., **29**, 2914 (1964).
- 783. F. Delay and G. Ohloff, Helv. Chim. Acta, 62, 2168 (1979).
- 784. J. W. Simek, D. L. Mattern, and C. Djerassi, Tetrahedron Lett., **1975**, 3671.
- 785. N. N. Joshi, V. R. Mamdapur, and M. S. Chadha, J. Chem. Soc., Perkin Trans. 1, **1983**, 2963.
- 786. H. H. Wasserman and E. H. Barber, J. Am. Chem. Soc., **91**, 3674 (1969).
- 787. J. L. Coke, H. J. Williams, and S. Natarajan, J. Org. Chem., **42**, 2380 (1977).
- 788. C. A. Bartram, D. A. Battye, and C. R. Worthing, J. Chem. Soc., **1963**, 4691.
- 789. R. M. Coates and K. Yano, Tetrahedron Lett., 1972, 2289.
- 790. X. Creary, J. Org. Chem., 40, 3326 (1975).
- 791. W. Adcock and A. N. Abeywickrema, J. Org. Chem., 47, 2951 (1982).
- 792. M. Walkowicz, S. Lochynski, and C. Walkowicz, Pol. J. Chem., **55**, 135 (1981).
- 793. P. G. Gassman and J. L. Smith, J. Org. Chem., 48, 4439 (1983).
- 794. H. R. Ansari, Tetrahedron, 29, 1559 (1973).
- 795. A. J. H. Klunder, G. J. A. Ariaans, E. A. R. M. van der Loop, and B. Zwanenburg, Tetrahedron, **42**, 1903 (1986).
- 796. C. H. De Puy, G. M. Dappan, K. L. Eileirs, and R. A. Klein, J. Org.

Chem., 29, 2813 (1964).

- 797. I. Mergelsberg, H. Langhals, and C. Ruchardt, Chem. Ber., **116**, 360 (1983).
- 798. R. A. Barnes, L. S. Aguiar, and R. L. DaCosta, An. Acad. Bras. Cienc., 52, 515 (1980).
- 799. T. Kashiwagi, R. Fujimori, S. Lozuka, and S. Oae, Tetrahedron, **26**, 3647 (1970).
- 800. L. Syper, K. Kloc, and J. Mochowski, Tetrahedron, 36, 123 (1980).
- 801. K. Inoue and K. Sakai, Tetrahedron Lett., 1977, 4063.
- 802. L. Skattebol, Chem. Scand., 17, 1683 (1963).
- 803. L. W. Boyle and J. K. Sutherland, Tetrahedron Lett., 1973, 839.
- 804. Y. Tobe, Y. Kanazawa, K. Kakiuchi, and Y. Odaira, Chem. Lett., **1982**, 1177.
- 805. W. D. Graham and P. von R. Schleyer, Tetrahedron Lett., 1972, 1179.
- 806. O. V. Lubinskaya, A. S. Shashkov, V. A. Chertkov, and W. A. Smit, Synthesis, **1976**, 742.
- 807. G. Buchbauer, Monatsh. Chem., **109**, 3 (1978).
- 808. M. Karpf and C. Djerassi, J. Am. Chem. Soc., **103**, 302 (1981).
- 809. J. A. Berson, P. B. Dervan, R. Malherbe, and J. A. Jenkins, J. Am. Chem. Soc., 98, 5937 (1976).
- 810. O. J. Muscio and C. D. Poulter, J. Org. Chem., 39, 3288 (1974).
- 811. Y. Gopichand, A. S. Khanra, R. B. Mitra, and K. K. Chakravarti, Indian J. Chem., **13**, 433 (1975).
- 812. S. S. Bhosale, B. G. Mahamulkar, K. G. Gore, G. H. Kulkarni, and R. B. Mitra, Indian J. Chem. Sect. B, 23, 216 (1984).
- 813. D. Seebach, V. Ehrig, and M. Teschner, Justus Liebigs Ann. Chem., **1976**, 1357.
- 814. V. K. Ahluwalia, V. N. Gupta, and T. R. Seshadri, Tetrahedron, **5**, 90 (1959).
- 815. K. Aghoramurthy and T. R. Seshadri, J. Chem. Soc., **1954**, 3065.
- 816. D. J. Cram and J. Allinger, J. Am. Chem. Soc., 76, 4516 (1954).
- 817. C. H. DePuy, F. W. Breitbeil, and K. R. DeBruin, J. Am. Chem. Soc., 88, 3347 (1966).
- 818. J. G. Cannon and J. E. Garst, J. Pharm. Sci., 64, 1059 (1975).
- 819. L. S. Aguiar, R. A. Barnes, and P. R. R. Costa, An. Acad. Bras. Cienc., 54, 121 (1982) [C.A., 97, 181851z (1982)].
- 820. G. R. Bourgery, A. P. Lacour, B. M. Pourrias, and R. Santamaria, U.S. Pat. 4,536,500 (1985) [C.A., **100**, 85390h (1984)].
- 821. R. E. Ireland and P. Maienfisch, J. Org. Chem., 53, 640 (1988).

- 822. B. A. Pearlman, J. Am. Chem. Soc., 101, 6398 (1979).
- 823. W. G. Dauben, R. C. Tweit, and C. Mannerskantz, J. Am. Chem. Soc., 76, 4420 (1954).
- 824. G. S. Krishnarao and L. R. Subramanian, Indian Pat. 105,499 (1968) [C.A., **81**, 169210b (1974)].
- 825. I. Fleming and N. K. Terrett, Tetrahedron Lett., 1984, 5103.
- 826. N. G. Bhat, B. M. Mane, G. H. Kulkarni, and R. B. Mitra, Indian J. Chem., Sect. B., 20, 204 (1981).
- 827. L. I. Zakharkin and V. V. Guseva, J. Org. Chem., 20, 2049 (1985).
- 828. J.-C. Gramain and R. Remuson, J. Org. Chem., 50, 1120 (1985).
- 829. W. E. Doering and E. Dorfman, J. Am. Chem. Soc., 75, 5595 (1953).
- 830. C. A. Bunton, T. A. Lewis, and D. R. Llewellyn, Chem. Ind. (London), **1954**, 191.
- R. S. Lunt, III, Thesis, University of California, Berkeley, California, 1968 [C.A., 70, 37276r (1969)].
- 832. V. K. Ahluwalia, V. N. Gupta, C. L. Rustagi, and T. R. Seshadri, J. Sci. Ind. Res., **19B**, 345 (1960).
- 833. A. J. H. Klunder and B. Zwanenburg, Tetrahedron, 28, 4131 (1972).
- 834. B. Zwanenburg and A. J. H. Klunder, Tetrahedron Lett., 1971, 1717.
- 835. T. Hino, Y. Torisawa, and M. Nakagawa, Chem. Pharm. Bull., **30**, 2349 (1982).
- 836. T. Momose and O. Muraoka, Chem. Pharm. Bull., 26, 2589 (1978).
- 837. H. Orzalesi, R. Granger, P. Joyeux, and P. Fulcrand, Bull. Soc. Chim. Fr., **1972**, 3855.
- 838. J. R. Cannon, E. L. Ghisalberti, and V. Lohanapiwatna, J. Sci. Soc. Thailand, 6, 59 (1980) [C.A., 93, 185878d (1980)].
- 839. J. Shimomura, J. Katsube, and M. Matsui, Agric. Biol. Chem., **39**, 657 (1975).
- 840. G. Beck and E. Henseleit, Chem. Ber., **104**, 21 (1971).
- 841. H. O. House and T. M. Bare, J. Org. Chem., 33, 943 (1968).
- 842. T. Chiba and T. Nakai, Chem. Lett., 1985, 651.
- 843. A. Noguchi, H. Kubota, and K. Honna, Yiki Gosei Kaguku Kyokai Shi, 21, 466 (1963) [C.A., 59, 11318g (1963)].
- 844. J. W. Labadie and J. K. Stille, J. Am. Chem. Soc., **105**, 669 (1983).
- 845. H. R. Gerberich, U.S. Pat. Appl. 921,702 (1986) [C.A., **110**, 94710w (1989)].
- 846. T. R. Kasturi and V. K. Sharma, Tetrahedron, **31**, 527 (1975).
- 847. K. Fukunishi, A. Kohno, and S. Kojo, J. Org. Chem., 53, 4369 (1988).
- 848. H. R. Shitole, P. Vyas, and U. R. Nayak, Tetrahedron Lett., 1983, 2411.

- 849. A. S. Bailey, M. L. Gilpin, and E. R. H. Jones, J. Chem. Soc., Perkin Trans. 1, **1977**, 265.
- 850. R. J. Capon, E. L. Ghisalberti, and P. R. Jefferies, Tetrahedron, **38**, 1699 (1982).
- 851. Y. Takata, K. Ichimura, and K. Kondo, Hokkaido Daigaku Kogakubu Kenkyu Hokoku, **54**, 325 (1969) [C.A., **72**, 100229m (1970)].
- 852. A. Noguchi and S. Kadosaka, J. Synth. Org. Chem., Jpn., 21, 520 (1963) [C.A., 59, 8645f (1963)].
- 853. R. Granger, H. Orzalesi, and P. Joyeux, C.R. Hebd. Seances Acad. Sci., 260, 923 (1965).
- 854. J. M. Blatchly, J. F. W. McOmie, and M. L. Watts, J. Chem. Soc., **1962**, 5085.
- 855. V. K. Ahluwalia, F. A. Ghazanfari, and N. Rani, Indian J. Chem., Sect. B, **20**, 106 (1981).
- 856. R. D. Gleim and L. A. Spurlock, J. Org. Chem., 41, 1313 (1976).
- 857. J. W. Huffman and R. Pandian, J. Org. Chem., 44, 1851 (1979).
- 858. D. Heissler, F. Jung, J. P. Vevert, and J. J. Riehl, Tetrahedron Lett., **1976**, 4879.
- 859. H. Sekizaki, M. Ito, and S. Inoue, Chem. Lett., 1978, 811.
- 860. M. Suzuki, N. Kowata, and E. Kurosawa, Tetrahedron, 36, 1551 (1980).
- 861. M. J. Ashton, A. S. Bailey, and E. R. H. Jones, J. Chem. Soc., Perkin Trans. 1, **1974**, 1665.
- 862. W. L. Albrecht, R. W. Fleming, S. W. Horgan, and G. D. Mayer, J. Med. Chem., 20, 364 (1977).
- 863. F. Wada, R. Arata, T. Goto, K. Kikukawa, and T. Matsuda, Bull. Chem. Soc. Jpn., 53, 2061 (1980).
- 864. D. Brewster, M. Myers, J. Ormerod, P. Otter, A. C. B. Smith, M. E. Spinner, and S. Turner, J. Chem. Soc., Perkin Trans. 1, **1973**, 2796.
- Y. S. Agasimundin and S. Siddappa, J. Chem. Soc., Perkin Trans. 1, 1973, 503.
- 866. V. K. Ahluwalia, D. Kumar, and Sunita, Indian J. Chem., 13, 546 (1975).
- 867. S. M. Burke and M. M. Joullie, Synth. Commun., 1976, 371.
- 868. G. R. Bourgery, A. P. Lacour, G. H. Moinet, B. M. Pourrias, and A.-M. P. Ruch, U.S. Pat. 4,248,788 (1981) [C.A., 94, 192353c (1981)].
- 869. A. B. Holmes, C. Swithenbank, and S. F. Williams, J. Chem. Soc., Chem. Commun., **1986**, 265.
- 870. V. K. Ahluwalia and C. Prakash, Indian J. Chem., Sect. B, **15**, 620 (1977).
- 871. V. K. Ahluwalia and Sunita, Indian J. Chem., Sect. B, **16**, 528 (1978).
- 872. T. Sugimoto and E. T. Kaiser, J. Am. Chem. Soc., 101, 3946 (1979).

- 873. C. H. Kuo, D. Taub, and N. L. Wendler, Tetrahedron Lett., 1972, 5317.
- 874. E. S. Olson, J. Am. Oil Chem. Soc., 54, 51 (1977).
- 875. J. M. Blatchly, D. V. Gardner, J. F. W. McOmie, and T. P. Prabhu, J. Chem. Soc. (C), **1969**, 2789.
- 876. K. Krohn and W. Baltus, Tetrahedron, **44**, 49 (1988).
- 877. H. Neudeck and K. Schlogl, Chem. Ber., **110**, 2624 (1977).
- 878. M. Fukui, Y. Yamada, A. Asakuru, and T. Oishi, Heterocycles, **15**, 415 (1981).
- 879. M. Fukui, Y. Endo, Y. Yamada, A. Asakura, and T. Oishi, Fukusokan Kagaku Toronkai Koen Yoshishu, **12**, 16 (1979) [C.A., **93**, 95450d (1980)].
- 880. W. Bernhard and I. Fleming, J. Organomet. Chem., 271, 281 (1984).
- 881. W. Bernhard, I. Fleming, and D. Waterson, J. Chem. Soc., Chem. Commun., **1984**, 28.
- 882. M. Ikeda, K. Ohno, S. Mohri, M. Takahashi, and Y. Tamura, J. Chem. Soc., Perkin Trans. 1, **1984**, 405.
- 883. M. Konda, T. Shioiri, and S.-I. Yamada, Chem. Pharm. Bull., **23**, 1063 (1975).
- 884. S. G. Levine and A. S. Ng, J. Org. Chem., **50**, 392 (1985).
- 885. S. Nishiyama, T. Ohgiya, S. Yamamura, K. Kato, M. Nagai, and T. Takita, Tetrahedron Lett., **1990**, 705.
- 886. R. C. Cambie, R. C. Hayward, and A. W. Missen, Aust. J. Chem., **27**, 2413 (1974).
- 887. H. Akita and T. Oishi, Chem. Pharm. Bull., 29, 1567 (1981).
- 888. H. Suginome, T. Uchida, K. Kizuka, and T. Masumune, Bull. Chem. Soc. Jpn., **53**, 2285 (1980).
- 889. J. R. Dias and R. Ramachandra, Org. Prep. Proced. Int., 9, 109 (1977).
- 890. F. Hodosan, I. Jude, N. Serban, and A. Balogh, Chem. Ber., **95**, 1094 (1962).
- 891. A. Murai, T. Nishimura, and T. Masamune, Bull. Chem. Soc. Jpn., **49**, 1612 (1976).
- 892. E. L. Ghisalberti, P. R. Jefferies, and P. N. Sheppard, Tetrahedron, **36**, 3253 (1980).
- 893. A. Fukuzawa, M. Miyamoto, Y. Kumagai, A. Abiko, Y. Takaya, and T. Masamune, Chem. Lett., **1985**, 1259.
- 894. J. Goto, K. Sudo, and T. Nambara, Chem. Pharm. Bull., **22**, 1140 (1974).
- 895. R. S. Davidson, W. H. H. Gunther, S. M. Waddington-Feather, and B. Lythgoe, J. Chem. Soc., **1964**, 4907.
- 896. V. V. Onoprienko, Y. P. Kosmin, and M. N. Kolosov, Bioorg. Khim., 4,

1418 (1978) [C.A., **90**, 54885u (1979)].

- 897. K. T. Wanner and A. Kartner, Heterocycles, **26**, 921 (1987).
- 898. T. Nambara, K. Shimada, Y. Fujii, and M. Kato, Chem. Pharm. Bull., 20, 336 (1972).
- 899. E. E. van Tamelen and E. G. Taylor, J. Am. Chem. Soc., **102**, 1202 (1980).
- 900. T. Nambara and J. Goto, Chem. Pharm. Bull., 19, 1937 (1971).
- 901. R. W. Kierstead and A. Faraone, J. Org. Chem., **32**, 704 (1967).
- 902. R. B. Turner, M. Perelman, and K. T. Park, J. Am. Chem. Soc., **79**, 1108 (1957).
- 903. R. W. Guthrie, A. Boris, J. G. Mullin, F. A. Mennona, and R. W. Kierstead, J. Med. Chem., 16, 257 (1963).
- 904. P. Crabbe, G. Ourisson, and T. Takahashi, Tetrahedron, 3, 279 (1958).
- 905. W. S. Johnson and L. A. Bunes, U.S. Pat. 4,219,489 (1980) [C.A., **94**, 140041e (1981)].
- 906. P. Kocovsky and Z. Prochazka, Collect. Czech. Chem. Commun., **39**, 1905 (1974).
- 907. W. S. Johnson, J. C. Collins, Jr., R. Pappo, M. B. Rubin, P. J. Kropp, W. F. Johns, J. E. Pike, and W. Bartmann, J. Am. Chem. Soc., **85**, 1409 (1963).
- 908. A. K. Bose and N. G. Steinberg, J. Org. Chem., 36, 2400 (1971).
- 909. A. Bekaert, M. Devys, and M. Barbier, Helv. Chim. Acta, 58, 1071 (1975).
- 910. A. Bekaert, M. Devys, and M. Barbier, Tetrahedron Lett., **1974**, 1671.
- 911. R. J. Ferrier, P. Prasit, G. J. Gainsford, and Y. L. Page, J. Chem. Soc., Perkin Trans. 1, **1983**, 1635.
- 912. A. S. Narula and S. Dev, Tetrahedron, **29**, 569 (1973).
- 913. B. M. Trost and Y. Matsumura, J. Org. Chem., 42, 2036 (1977).
- 914. D. Gust, J. Jacobus, and K. Mislow, J. Org. Chem., 33, 2996 (1968).
- 915. P. Chakrabarti, A. Basak, and A. K. Barua, Trans. Bose Res. Inst., Calcutta., **40**, 117 (1977) [C.A., **90**, 104160b (1979)].
- 916. J. Salaun, B. Garnier, and J. M. Conia, Tetrahedron, **30**, 1423 (1974).
- 917. D. C. Dittmer, R. A. Fouty, and J. R. Potoski, Chem. Ind. (London), **164**, 152.
- 918. W. F. Sager and A. Duckworth, J. Am. Chem. Soc., 77, 188 (1955).
- 919. E. E. Smissman, J. F. Muren, and N. A. Dahle, J. Org. Chem., **29**, 3517 (1964).
- 920. G. B. Payne and C. W. Smith, J. Org. Chem., 22, 1680 (1957).
- 921. J. M. Schwab, W. Li, and L. P. Thomas, J. Am. Chem. Soc., 105, 4800

(1983).

- 922. J. M. Schwab, J. Am. Chem. Soc., **103**, 1876 (1981).
- 923. H. Remane, R. Borsdorf, and M. Muehlstaedt, J. Prakt. Chem., **312**, 1058 (1970).
- 924. R. D. Bach, M. W. Klein, R. A. Ryntz, and J. W. Holubka, J. Org. Chem., 44, 2569 (1979).
- 925. J. A. Cella, J. A. Kelley, and E. F. Kenehan, J. Org. Chem., **40**, 1860 (1975).
- 926. C. G. Pitt, Z. W. Gu, P. Ingram, and R. W. Hendren, J. Polym. Sci., Polym. Chem. Ed. A, **25**, 955 (1987).
- 927. J. W. Wheeler, S. L. Evans, M. S. Blum, H. H. V. Velthius, and J. M. F. deCamargo, Tetrahedron Lett., **1976**, 4029.
- 928. E. Cooke, T. C. Paradellis, and J. T. Edward, Can. J. Chem., **60**, 29 (1982).
- 929. R. Huisgen and H. Ott, Angew. Chem., 70, 312 (1958).
- 930. S. Canonica, M. Ferrari, and M. Sisti, Org. Prep. Proced. Int., **21**, 253 (1989).
- 931. J. K. Crandell and W. H. Machleder, Tetrahedron Lett., 1966, 6037.
- 932. D. H. Gibson and J. T. Joseph, Tetrahedron Lett., 1972, 3483.
- 933. C. Bischoff, Z. Chem., 13, 11 (1973).
- 934. P. Y. Johnson and Y. Yee, J. Org. Chem., 37, 1058 (1972).
- 935. C. H. Heathcock and T. W. von Geldern, Heterocycles, 25, 75 (1987).
- 936. F. Kienzle, Synth. Commun., **1976**, 465.
- 937. R. Huisgen and H. Ott, Tetrahedron, 6, 253 (1959).
- 938. E. Leete and R. A. Carver, J. Org. Chem., 40, 2151 (1975).
- 939. R. W. Carling, N. R. Curtis, and A. B. Holmes, Tetrahedron Lett., **1989**, 6081.
- 940. J. M. Denis and J. M. Conia, Tetrahedron Lett., 1973, 461.
- 941. H. Sakurai and M. Murakami, Org. Prep. Proced. Int., 5, 1 (1973).
- 942. H.-J. Schneider, A. Ahlhelm, and W. Muller, Chem. Ber., **117**, 3297 (1984).
- 943. J. d'Angelo, G. Revial, R. Azerad, and D. Buisson, J. Org. Chem., **51**, 40 (1986).
- 944. J. P. Genet and P. Kahn, Tetrahedron Lett., 1980, 1521.
- 945. B. D. Mookherjee, R. W. Trenkle, and R. R. Patel, J. Org. Chem., **37**, 3846 (1972).
- 946. K. Kosswig, W. Stumpf, and W. Kirchhof, Justus Liebigs Ann. Chem., 681, 28 (1965).
- 947. H. Nozaki and R. Nyori, J. Org. Chem., **30**, 1652 (1965).

- 948. G. Kirchner and H. Weidmann, Justus Liebigs Ann. Chem., 1985, 214.
- 949. K. Naraska, Y. Ukaji, and K. Watanabe, Bull. Chem. Soc. Jpn., **60**, 1457 (1987).
- 950. S. Kim, C. Y. Hong, and Y. C. Moon, J. Org. Chem., 47, 4350 (1982).
- 951. B. D. Mookherjee and W. I. Taylor, U.S. Pat. 3,728,358 (1973) [C.A., **76**, 24781a (1972)].
- 952. V. V. Kane, U.S. Pat. 4,237,053 (1980) [C.A., 95, 25337q (1981)].
- 953. A. Prelle and E. Winterfeldt, Heterocycles, 28, 333 (1989).
- 954. P. K. Kapa, U.S. Pat. 4,571,428 (1986) [C.A., 105, 60752t (1986)].
- 955. P. A. Parziale and J. A. Berson, J. Am. Chem. Soc., 112, 1650 (1990).
- 956. E. J. Corey and W.-G. Su, Tetrahedron Lett., 1990, 3833.
- 957. E. J. Corey and J. Mann, J. Am. Chem. Soc., 95, 6832 (1973).
- 958. S. M. Ali, M. A. W. Finch, and S. M. Roberts, J. Chem. Soc., Chem. Commun., **1979**, 679.
- 959. B. B. Snider and R. A. H. F. Hui, J. Org. Chem., 50, 5167 (1985).
- 960. S. M. Ali and S. M. Roberts, J. Chem. Soc., Chem. Commun., **1975**, 887.
- 961. E. J. Corey and T. Ravindranathan, Tetrahedron Lett., 1971, 4753.
- 962. P. W. Jeffs, G. Molina, M. W. Cass, and N. A. Cortese, J. Org. Chem., 47, 3871 (1982).
- 963. P. W. Jeffs and G. Molina, J. Chem. Soc., Chem. Commun., 1973, 3.
- 964. M. S. Reddy, G. L. D. Krupadanam, and G. Srimannarayana, Org. Prep. Proced. Int., **21**, 221 (1989).
- 965. A. Chatterjee, S. Bhattacharya, J. Banerji, and P. C. Ghosh, Indian J. Chem, Sect. B, **15**, 214 (1977).
- 966. M. Clerc-Bory and C. Mentzer, C.R. Hebd. Seances Acad. Sci., **241**, 1316 (1955).
- 967. K. Fuji, T. Kawabata, M. Node, and E. Fujita, J. Org. Chem., **49**, 3214 (1984).
- 968. A. Chatterjee and S. Ghosh, Synthesis, 1981, 818.
- 969. R. J. Spangler and J. H. Kim, Synthesis, 1973, 107.
- 970. F. Eiden and C. Schmiz, Arch. Pharm. (Weinheim, Ger.), **312**, 741 (1979).
- 971. K. Jarowicki and T. Jaworski, Monatsh. Chem., 115, 605 (1984).
- 972. I. Fleming and B. Au-Yeung, Tetrahedron, 37 (Suppl. 9), 13 (1981).
- 973. P. van Eikeren, J. Org. Chem., 45, 4641 (1980).
- 974. G. Mehta and P. N. Pandey, Synthesis, **1975**, 404.
- 975. B. W. Au-Yeung and I. Fleming, J. Chem. Soc., Chem. Commun., **1977**, 79.

- 976. M. Ikeda, M. Takahashi, T. Uchino, K. Ohno, Y. Tamura, and M. Kido, J. Org. Chem., **48**, 4241 (1983).
- 977. K. Mori and T. Uno, Tetrahedron, 45, 1949 (1989).
- 978. O. L. Chapman, T. H. Koch, F. Klein, P. J. Nelson, and E. L. Brown, J. Am. Chem. Soc., **90**, 1657 (1968).
- 979. K. Mori and M. Sasaki, U.S. Pat. 4,296,036 (1981) [C.A., **94**, 139819h (1981)].
- 980. L. Ghosez, I. Marko, and A.-M. Hesbian-Frisque, Tetrahedron Lett., **1986**, 5211.
- 981. K. Kakiuchi, T. Tsugaru, Y. Tobe, and Y. Odaira, J. Org. Chem., **46**, 4204 (1981).
- 982. S. W. Baldwin and M. T. Crimmins, Tetrahedron Lett., **1978**, 4197.
- 983. J. Leonard, D. Ouali, and S. K. Rahman, Tetrahedron Lett., 1990, 739.
- 984. J.-B. Wiel and F. Rouessac, Bull. Soc. Chim. Fr., 1979, 273.
- 985. J.-B. Wiel and F. Rouessac, J. Chem. Soc., Chem. Commun., **1975**, 180.
- 986. M. Nakazaki, K. Naemura, and S. Nakahara, J. Org. Chem., **43**, 4745 (1978).
- 987. D. Becker, Z. Harel, M. Nagler, and A. Gilon, J. Org. Chem., 47, 3297 (1982).
- 988. M. G. Bigg, S. M. Roberts, and H. Suschitzky, J. Chem. Soc., Perkin Trans. 1, **1981**, 926.
- 989. P. A. Grieco and K. Hiroi, Tetrahedron Lett., 1974, 3467.
- 990. R. C. Gadwood, R. M. Lett, and J. E. Wissinger, J. Am. Chem. Soc., **108**, 6343 (1986).
- 991. S. Escher, W. Giersch, and G. Ohloff, Helv. Chim. Acta, 64, 943 (1981).
- 992. A. G. Schultz, R. D. Lucci, W. Y. Fu, M. H. Berger, J. Erhardt, and W. K. Hagmann, J. Am. Chem. Soc., **100**, 2150 (1978).
- 993. A. G. Schultz, J. Erhardt, and W. K. Hagmann, J. Org. Chem., **42**, 3458 (1977).
- 994. C. H. Howard, R. F. Newton, D. P. Reynolds, and S. M. Roberts, J. Chem. Soc., Perkin Trans. 1, **1981**, 2049.
- 995. U. R. Ghatak, B. Sanyal, S. O. S. V. Satyanarayana, and S. Ghosh, J. Chem. Soc., Perkin Trans. 1, **1981**, 1203.
- 996. M. R. Uskokovic, T. Henderson, C. Reese, H. L. Lee, G. Grethe, and J. Gutzwiller, J. Am. Chem. Soc., **100**, 571 (1978).
- 997. W. J. Rodewald and B. M. Jagodzinska, Pol. J. Chem., 54, 709 (1980).
- 998. Y. Ohtsuka and A. Tahara, Chem. Pharm. Bull., 21, 643 (1973).
- 999. T. Nakamura, H. Hirota, and T. Takahashi, Chem. Pharm. Bull., 34,

3518 (1986).

- 1000. S. Hrycko, P. Morand, and F. L. Lee, J. Chem. Soc., Perkin Trans. 1, **1989**, 1311.
- 1001. P. A. Grieco, T. Oguri, C.-L. J. Wang, and E. Williams, J. Org. Chem., **42**, 4113 (1977).
- 1002. G. R. Pettit, B. Green, T. R. Kasturi, and U. R. Ghatak, Tetrahedron, **18**, 953 (1962).
- 1003. R. Weidmann, Bull. Soc. Chim. Fr., 1971, 912.
- 1004. Y. Ohtsuka and A. Tahara, Chem. Pharm. Bull., 21, 653 (1973).
- 1005. R. H. Burnell, M. Jean, D. Poirier, and S. Savard, Can. J. Chem., **62**, 2822 (1984).
- 1006. R. H. Burnell, M. Neron-Desbiens, and S. Savard, Synth. Commun., **1982**, 11.
- 1007. N. L. Allinger and S. Greenberg, J. Org. Chem., 25, 1399 (1960).
- 1008. D. Takaoka, J. Chem. Soc., Perkin Trans. 1, 1979, 2711.
- 1009. R. J. Ferrier, P. Prasit, and P. C. Tyler, J. Chem. Soc., Perkin Trans. 1, **1983**, 1641.
- 1010. E. Caspi, D. M. Piatek, and P. K. Grover, J. Chem. Soc. (C), **1966**, 1034.
- 1011. M. Bialer, Tetrahedron Lett., **1981**, 2683.
- 1012. E. Csapi, Y. Shimizu, and S. N. Balasubramanyam, Tetrahedron, **20**, 1271 (1964).
- 1013. E. Caspi and S. N. Balasubramanyam, Tetrahedron Lett., 1963, 745.
- 1014. C. W. Shoppee, F. P. Johnson, R. E. Lack, J. S. Shannon, and S. Sternhell, Tetrahedron Suppl. 8, Part II, 421 (1966).
- 1015. A. Andersen, M. Neron-Desbiens, S. Savard, and R. H. Burnell, Synth. Commun., **10**, 183 (1980).
- 1016. B. Gioia, M. Ballabio, E. M. Beccalli, and R. Cecchi, J. Chem. Soc., Perkin Trans. 2, **1981**, 560.
- 1017. S. Hara, N. Matsumoto, and M. Takeuchi, Chem. Ind. (London), **1962**, 2086.
- 1018. N. Stojanac, Z. Stojanac, P. S. White, and Z. Valenta, Can. J. Chem., **57**, 3346 (1979).
- 1019. J. M. Ferland and Y. Lefebvre, Can. J. Chem., 62, 309 (1984).
- 1020. H. R. Nace and A. C. Watterson, Jr., J. Org. Chem., **31**, 2109 (1966).
- 1021. W. J. Szczepek, J. W. Morzycki, Z. Boneza-Tomaszewski, M. Chodynski, and W. J. Rodewald, Can. J. Chem., **62**, 1081 (1984).
- 1022. M. J. Begley, L. Crombie, and T. F. W. B. Knapp, J. Chem. Soc., Perkin Trans. 1, **1979**, 976.

- 1023. M. Kondo and K. Mori, Agric. Biol. Chem., 47, 97 (1983).
- 1024. W. Zhou and W. Tian, Huaxue Xuebao, **42**, 1173 (1984) [C.A., **102**, 221085h (1984)].
- 1025. T. Rull and G. Ourisson, Bull. Soc. Chim. Fr., 1958, 1573.
- 1026. Shafiullah, M. A. Ghaffari and H. Ali, Tetrahedron, **36**, 2263 (1980).
- 1027. M. P. Irismetov, M. I. Goryaev, G. B. Rustambekova, and N. A. Mirzasalieva, Izv. Akad. Nauk Kaz. SSR, Ser. Khim., **1983**, 75 [C.A., **99**, 5899d (1983)].
- 1028. M. P. Irismetov and M. I. Goryaev, Tr. Inst. Khim. Nauk Kaz. SSR, **52**, 17 (1980) [C.A., **95**, 7585q (1980)].
- 1029. V. V. Kuril'skaya, M. P. Irismetov, M. I. Goryaevc, V. S. Bazalitskaya, and L. G. Mikhaleva, Izv. Akad. Nauk Kaz. SSR, Ser. Khim., **1977**, 46 [C.A., **88**, 51090d (1978)].
- 1030. A. M. Maione and M. G. Quaglia, Chem. Ind. (London), 1977, 230.
- 1031. C. W. Shoppee and J. C. P. Sly, J. Chem. Soc., **1958**, 3458.
- 1032. S. Mori and F. Mukawa, Proc. Jpn. Acad., **31**, 532 (1955) [C.A., **50**, 11358i (1956)].
- 1033. S. Hara and N. Matsumoto, Yakugaku Zasshi, **85**, 48 (1965) [C.A., **62**, 14769a (1965)].
- 1034. W. Klyne, D. N. Kirk, J. Tilley, and H. Suginome, Tetrahedron, **36**, 543 (1980).
- 1035. I. M. Cunningham and K. H. Overton, J. Chem. Soc., Perkin Trans. 1, 1975, 2140.
- 1036. S. Fung and J. B. Siddall, J. Am. Chem. Soc., 102, 6580 (1980).
- 1037. S. Takatsuto and N. Ikekawa, J. Chem. Soc. Perkin Trans. 1, **1983**, 2133.
- 1038. S. Takatsuto and N. Ikekawa, Tetrahedron Lett., 1983, 773.
- 1039. S. S. Rothman, M. E. Wall, and C. R. Eddy, J. Am. Chem. Soc., **76**, 527 (1954).
- 1040. D. Rosenthal, A. O. Niedermeyer, and J. Fried, J. Org. Chem., **30**, 510 (1965).
- 1041. S. Takatsuto and N. Ikekawa, Chem. Pharm. Bull., 32, 2001 (1984).
- 1042. G. Garcia, Y. Grillasca, J. Tamaris, A. Greene, and P. Crabbe, Can. J. Chem., **60**, 2521 (1982).
- 1043. J. D. Connolly, I. M. S. Thornton, and D. A. H. Taylor, J. Chem. Soc. (D), **1970**, 1205.
- 1044. J. D. Connolly, I. M. S. Thornton, and D. A. H. Taylor, J. Chem. Soc. (D), **1971**, 17.
- 1045. M. Nishizawa, H. Nishide, Y. Hayashi, and S. Kosela, Tetrahedron Lett., **1982**, 1349.

- 1046. A. K. Shaw and S. N. Ganguly, Trans. Bose Res. Inst. (Calcutta), **49**, 45 (1986) [C.A., **110**, 95565q (1989)].
- 1047. A. Hassner and L. R. Krepski, J. Org. Chem., 44, 1376 (1979).
- 1048. W.-H. Hui, M. M. Li, and Y.-C. Lee, J. Chem. Soc., Perkin Trans. 1, **1975**, 617.
- 1049. S. K. Talapatra, S. Bhattacharya, and B. Talapatra, J. Indian Chem. Soc., **47**, 600 (1970).
- 1050. M. Tori, R. Matsuda and Y. Asakawa, Chem. Lett., 1985, 167.
- 1051. B. Talapatra, B. Lahiri, A. Basak, D. K. Pradhan, and S. K. Talapatra, Indian J. Chem., Sect. B, **22**, 741 (1983).
- 1052. A. S. R. Anjaneyulu, L. R. Row, and C. Subrahmanyam, Indian J. Chem., **10**, 908 (1972).
- 1053. S. Iwasaki, K. Okaniwa, and S. Okuda, Tetrahedron Lett., 1972, 4601.
- 1054. W. O. Godtfredsen, N. Rastrup-Andersen, S. Vanegedal, and W. D. Ollis, Tetrahedron, **35**, 2419 (1979).
- 1055. R. B. Mitra, B. G. Hazra, and V. M. Kapoor, Indian J. Chem., Sect. B, 23, 106 (1984).
- 1056. T. Kametani, T. Katoh, M. Tsubuki, and T. Honda, Chem. Pharm. Bull., **35**, 2334 (1987).
- 1057. S. Takatsuto, N. Yazawa, and N. Ikekawa, Phytochemistry, **23**, 525 (1984).
- 1058. K. Okada and K. Mori, Agric. Biol. Chem., 47, 89 (1983).
- 1059. S. Takatsuto, B. Ying, M. Morisaki, and N. Ikekawa, Chem. Pharm. Bull., **29**, 903 (1981).
- 1060. S. Takatsuto and N. Ikekawa, J. Chem. Soc., Perkin Trans. 1, **1984**, 439.
- 1061. S. Takatsuto and N. Ikekawa, Chem. Pharm. Bull., 34, 4045 (1986).
- 1062. K. Mori, M. Sakakibara, Y. Ichikawa, H. Ueda, K. Okada, T. Umemura, G. Yabuta, S. Kuwahara, and M. Kondo, Tetrahedron, **38**, 2099 (1982).
- 1063. M. Sakakibara, K. Okada, Y. Ichikawa, and K. Mori, Heterocycles, **17**, 301 (1982).
- 1064. M. J. Thompson, N. B. Mandava, W. J. Meudt, W. R. Lusby, and D. W. Spaulding, Steroids, **38**, 567 (1981).
- 1065. T. Kametani, T. Katoh, J. Fujio, I. Nogiwa, M. Tsubuki, and T. Honda, J. Org. Chem., **53**, 1982 (1988).
- 1066. M. J. Thompson, N. Mandava, J. L. Flippen-Anderson, J. E. Worley, S. R. Dutsky, W. E. Robbins, and W. Lusby, J. Org. Chem., 44, 5002 (1979).
- 1067. M. Sakakibara and K. Mori, Agric. Biol. Chem., 46, 2769 (1982).
- 1068. J. Meinwald, M. C. Seidel, and B. C. Cadoff, J. Am. Chem. Soc., 80,

6303 (1958).

- 1069. S. Takano, H. Iwata, and K. Ogasawara, Heterocycles, 9, 1249 (1978)
- 1070. J. L. Marshall, J. P. Brooks, and G. W. Hatzenbuehler, J. Org. Chem., **34**, 4193 (1969).
- 1071. J. S. Bindra, A. Grodski, T. K. Schaaf, and E. J. Corey, J. Am. Chem. Soc., **95**, 7522 (1973).
- 1072. P. A. Grieco, E. Williams, H. Tanaka, and S. Gilman, J. Org. Chem., **45**, 3537 (1980).
- 1073. J. P. Guare, Masters thesis, Temple University, Philadelphia, Pennsylvania 1983.
- 1074. D. G. Patil, H. P. S. Chawla, and S. Dev, Tetrahedron, 35, 527 (1979).
- 1075. H. Suginome and S. Yamada, Synthesis, 1986, 741.
- 1076. R. M. Black and G. B. Gill, J. Chem. Soc. (C), **1970**, 671.
- 1077. D. Faulkner and M. A. McKervey, J. Chem. Soc. (C), **1971**, 3906.
- 1078. L. Vodicka and J. Hlavaty, Czech. Pat. 154,536 (1974) [C.A., **83**, 9325f (1975)].
- 1079. A. C. Udding, H. Wynberg, and J. Strating, Tetrahedron Lett., **1968**, 5719.
- 1080. R. Russo, Y. Lambert, and P. Deslongchamps, Can. J. Chem., **49**, 531 (1971).
- 1081. T. Momose and S. Atarashi, Heterocycles, 9, 631 (1978).
- 1082. J. Ondracek, J. Josef, J. Novotny, L. Bodicka, L. Csordas, and B. Kratochvil, Collect. Czech. Chem. Commun., **54**, 3260 (1989).
- 1083. S. S. Roy and S. Ghosh, Tetrahedron, 43, 5995 (1987).
- 1084. E. D. Brown and T. J. Lilley, J. Chem. Soc., Chem. Commun., 1975, 39.
- 1085. I. Saito, R. Nagata, and T. Matsuura, Tetrahedron Lett., 1984, 2687.
- 1086. T. Yokoyama and N. Izui, Bull. Chem. Soc. Jpn., 38, 1501 (1965).
- 1087. A. Abad, C. Agullo, A. C. Cunat, and R. J. Zaragoza, J. Org. Chem., **54**, 5123 (1989).
- 1088. S. Hrycko, P. Morand, F. L. Lee, and E. J. Gabe, J. Org. Chem., **53**, 1515 (1988).
- 1089. M. Binder and C. Tamm, Helv. Chim. Acta, 56, 966 (1973).
- 1090. T. Toki, Y. Onda, G. Koyama, and Y. Hasegawa, Jpn. Pat. 63,277,644 [88,277,644] (1988) [C.A., **110**, 172890w (1989)].
- 1091. M. Linuma, T. Tanaka, and S. Matsuura, Heterocycles, **20**, 2425 (1983).
- 1092. R. K. Sehgal and S. Kumar, Org. Prep. Proced. Int., 21, 223 (1989).